【題目】如圖,已知拋物線(a0)的對稱軸為直線,且拋物線經(jīng)過A(1,0),C(03)兩點,與軸交于點B

1)若直線經(jīng)過B,C兩點,求直線BC和拋物線的解析式;

2)在拋物線的對稱軸上找一點M,使MA+MC的值最小,求點M的坐標(biāo);

3)設(shè)P為拋物線的對稱軸上的一個動點,求使ΔBPC為直角三角形的點P的坐標(biāo).

【答案】1y=x+3,;(2M(1,2);(3P的坐標(biāo)為(-1,-2)(-1,4)(-1,)(-1,)

【解析】

1)先把點A,C的坐標(biāo)分別代入拋物線解析式得到ab,c的關(guān)系式,再根據(jù)拋物線的對稱軸方程可得ab的關(guān)系,再聯(lián)立得到方程組,解方程組,求出ab,c的值即可得到拋物線解析式;把B、C兩點的坐標(biāo)代入直線y=mx+n,解方程組求出mn的值即可得到直線解析式;
2)設(shè)直線BC與對稱軸x=-1的交點為M,則此時MA+MC的值最。x=-1代入直線y=x+3y的值,即可求出點M坐標(biāo);
3)設(shè)P-1,t),又因為B-3,0),C0,3),所以可得BC2=18PB2=-1+32+t2=4+t2,PC2=-12+t-32=t2-6t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標(biāo).

解:(1)由題意得:

解得:,拋物線的解析式為:

由題意得B(-30)

B(-3,0),C(0,3)代入得:

解得:,直線的解析式為

2)設(shè)直線BC與對稱軸x=1的交點為M,則此時MA+MC的值最。

代入直線,M(1,2),

即當(dāng)點M到點A的距離與到點C的距離之和最小時M的坐標(biāo)為(1,2);

3)設(shè)P(-1,t)B(-3,0),C(0,3),,,

若點B為直角頂點時,則

即:

解得:

若點C為直角頂點時,則

即:

解得:

P為直角頂點時,則

即:

解得:

綜上所述:P的坐標(biāo)為(-1,-2)(-1,4)(-1,)(-1)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BCCD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點A逆時針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點EF分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時,仍有EF=BE+FD請證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°ADC=120°,BAD=150°,道路BC、CD上分別有景點EF,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41 =1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生對網(wǎng)上在線學(xué)習(xí)效果的滿意度,某校設(shè)置了:非常滿意、滿意、基本滿意、不滿意四個選項,隨機(jī)抽查了部分學(xué)生,要求每名學(xué)生都只選其中的一項,并將抽查結(jié)果繪制成如圖統(tǒng)計圖(不完整).

請根據(jù)圖中信息解答下列問題:

1)求被抽查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計圖;(溫馨提示:請畫在答題卷相對應(yīng)的圖上)

2)求扇形統(tǒng)計圖中表示滿意的扇形的圓心角度數(shù);

3)若該校共有1000名學(xué)生參與網(wǎng)上在線學(xué)習(xí),根據(jù)抽查結(jié)果,試估計該校對學(xué)習(xí)效果的滿意度是非常滿意滿意的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,△ABC的頂點A,C分別是直線y=x+4與坐標(biāo)軸的交點,點B的坐標(biāo)為(﹣2,0),點D是邊AC上的一點,DEBC于點E,點F在邊AB上,且DF兩點關(guān)于y軸上的某點成中心對稱,連結(jié)DF,EF.設(shè)點D的橫坐標(biāo)為m,EF2l,請?zhí)骄浚?/span>

①線段EF長度是否有最小值.

②△BEF能否成為直角三角形.

小明嘗試用觀察﹣猜想﹣驗證﹣應(yīng)用的方法進(jìn)行探究,請你一起來解決問題.

1)小明利用幾何畫板軟件進(jìn)行觀察,測量,得到lm變化的一組對應(yīng)值,并在平面直角坐標(biāo)系中以各對應(yīng)值為坐標(biāo)描點(如圖2).請你在圖2中連線,觀察圖象特征并猜想lm可能滿足的函數(shù)類別.

2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識能驗證(1)中的猜想,請你求出l關(guān)于m的函數(shù)表達(dá)式及自變量的取值范圍,并求出線段EF長度的最小值.

3)小明通過觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請你求出當(dāng)△BEF為直角三角形時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐘南山院士談到防護(hù)新型冠狀病毒肺炎時說:我們需要重視防護(hù),但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運動,少熬夜.某社區(qū)為了加強(qiáng)社區(qū)居民對新型冠狀病毒肺炎防護(hù)知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護(hù)知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷(滿分100分),社區(qū)管理員隨機(jī)從有400人的某小區(qū)抽取40名人員的答卷成績,并對他們的成績(單位:分)統(tǒng)計如下:

85 80 95 100 90 95 85 65 75 85

90 90 70 90 100 80 80 90 95 75

80 60 80 95 85 100 90 85 85 80

95 75 80 90 70 80 95 75 100 90

根據(jù)數(shù)據(jù)繪制了如下的表格和統(tǒng)計圖:

根據(jù)上面提供的信息,回答下列問題:

1)統(tǒng)計表中的a   ,b   c= ,d=

2)請補(bǔ)全條形統(tǒng)計圖;

3)根據(jù)抽樣調(diào)查結(jié)果,請估計該小區(qū)答題成績?yōu)?/span>C的有多少人?

4)該社區(qū)有2名男管理員和2名女管理員,現(xiàn)從中隨機(jī)挑選2名管理員參加社區(qū)防控宣傳活動,請用樹狀圖法或列表法求出恰好選中“11的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解本校九年級學(xué)生期末數(shù)學(xué)考試情況,在九年級隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績?yōu)闃颖,分?/span>分)、分)、分)、分)四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:

1)這次隨機(jī)抽取的學(xué)生共有多少人?

2)請補(bǔ)全條形統(tǒng)計圖.

3)這個學(xué)校九年級共有學(xué)生人,若分?jǐn)?shù)為分(含分)以上為優(yōu)秀,請估計這次九年級學(xué)生期末數(shù)學(xué)考試成績?yōu)閮?yōu)秀的學(xué)生大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ly=x,過點A(0,1)y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2;……按此作法繼續(xù)下去,則點A2020的坐標(biāo)為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題探究:如圖1所示,有公共頂點A的兩個正方形ABCD和正方形AEFGAEAB,連接BEDG,請判斷線段BE與線段DG之間有怎樣的數(shù)量關(guān)系和位置關(guān)系.并請說明理由.

2)理解應(yīng)用:如圖2所示,有公共頂點A的兩個正方形ABCD和正方形AEFG,AEABAB10,將正方形AEFG繞點A在平面內(nèi)任意旋轉(zhuǎn),當(dāng)∠ABE15°,且點D、EG三點在同一條直線上時,請直接寫出AE的長   ;

3)拓展應(yīng)用:如圖3所示,有公共頂點A的兩個矩形ABCD和矩形AEFG,AD4AB4,AG4,AE4,將矩形AEFG繞點A在平面內(nèi)任意旋轉(zhuǎn),連接BD,DE,點M,N分別是BDDE的中點,連接MN,當(dāng)點DE、G三點在同一條直線上時,請直接寫出MN的長   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點,與軸的交點在點與點之間(不包括這兩點),對稱軸為直線.有下列結(jié)論:

;②;③;④若點,在拋物線上,則.其中正確結(jié)論的個數(shù)是()

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案