【題目】探索與運用:
(1)基本圖形:如圖①,已知OC是∠AOB的角平分線,DE∥OB,分別交OA、OC于點D、E.求證:DE=OD;
(2)在圖②中找出這樣的基本圖形,并利用(1)中的規(guī)律解決這個問題:已知△ABC中,兩個內(nèi)角∠ABC與∠ACB的平分線交于點O,過點O作DE∥BC,交AB、AC于點D、E.求證:DE=BD+CE;
(3)若將圖②中兩個內(nèi)角的角平分線改為一個內(nèi)角(如圖③,∠ABC)、一個外角(∠ACF)和兩個都是外角(如圖④∠DBC、∠BCE)的角平分線,其它條件不變,則線段DE、BD、CE的數(shù)量關(guān)系分別是:圖③為 、圖④為 :并從中任選一個結(jié)論證明.
【答案】(1)(2)(3)證明見解析
【解析】
試題分析:(1)根據(jù)角平分線的定義得到∠AOC=∠BOC,根據(jù)平行線的性質(zhì)得到∠DEO=∠BOC,等量代換得到∠DEO=AOC,根據(jù)等腰三角形的判定即可得到結(jié)論;
(2)根據(jù)△ABC中,∠ABC和∠ACB的平分線相交于點O.求證∠DBO=∠OBC,∠ECO=∠BCO,再利用兩直線平行內(nèi)錯角相等,求證出∠DOB=∠DBO,∠COE=∠BCO,即BD=DO,OE=CE,然后利用等量代換即可求出結(jié)論;
(3)選③證明:由(1)中證明可得:DB=DO,EO=EC,根據(jù)線段的和差即可得到結(jié)論
證明:(1)∵OC平分∠AOB,
∴∠AOC=∠BOC,
∵DE∥OB,
∴∠DEO=∠BOC,
∴∠DEO=AOC,
∴DE=OD;
(2)∵∠ABC和∠ACB的平分線相交于點O,
∴∠DBO=∠OBC,∠ECO=∠BCO,
∵DE∥BC,交AB于點D,交AC于點E.
∴∠DOB=∠DBO,∠COE=∠ECO,
∴BD=DO,OE=CE,
∴DE=BD+CE;
(3)圖③:DE=BD﹣CE,圖④:DE=BD+CE,
選③證明:
由(1)中證明可得:DB=DO,EO=EC,
∴DE=OD=OE=DB﹣CE.
故答案為:DE=BD﹣CE,DE=BD+CE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(0,α),B(b,α),且α、b滿足(a﹣2)2+|b﹣4|=0,現(xiàn)同時將點A,B分別向下平移2個單位,再向左平移1個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,AB.
(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD
(2)在y軸上是否存在一點M,連接MC,MD,使S△MCD=S四邊形ABDC?若存在這樣一點,求出點M的坐標,若不存在,試說明理由.
(3)點P是線段BD上的一個動點,連接PA,PO,當點P在BD上移動時(不與B,D重合)的值是否發(fā)生變化,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義新運算:對于任意實數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5
(1)求3⊕(﹣2)的值;
(2)若3⊕x的值小于16,求x的取值范圍,并在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)探究與發(fā)現(xiàn):如圖①,在Rt△ABC中,∠BAC=90°,AB=AC,點D在底邊BC上,AE=AD,連結(jié)DE.
(1)當∠BAD=60°時,求∠CDE的度數(shù);
(2)當點D在BC (點B、C除外) 上運動時,試猜想并探究∠BAD與∠CDE的數(shù)量關(guān)系;
(3)深入探究:若∠BAC≠90°,試就圖②探究∠BAD與∠CDE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列解題過程的空白處填上適當?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達式)
如圖,已知AB∥CD,BE、CF分別平分∠ABC和∠DCB,求證:BE∥CF.
證明:
∵AB∥CD,(已知)
∴∠ =∠ .( )
∵ ,(已知)
∴∠EBC=∠ABC,(角的平分線定義)
同理,∠FCB= ∠BCD .
∴∠EBC=∠FCB.(等式性質(zhì))
∴BE∥CF.( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com