如圖,將矩形ABCD沿直線EF折疊,使點C與點A重合,折痕交AD于點E、交BC于點F,連接AF、CE.
(1)求證:四邊形AFCE為菱形;
(2)設(shè)AE=a,ED=b,DC=c.請寫出一個a、b、c三者之間的數(shù)量關(guān)系式.
分析 (1)由矩形ABCD與折疊的性質(zhì),易證得△CEF是等腰三角形,即CE=CF,即可證得AF=CF=CE=AE,即可得四邊形AFCE為菱形.
(2)由折疊的性質(zhì),可得CE=AE=a,在Rt△DCE中,利用勾股定理即可求得:a、b、c三者之間的數(shù)量關(guān)系式為:a2=b2+c2.(答案不唯一)
(1)證明 ∵四邊形ABCD是矩形,
∴AD∥BC,∴∠AEF=∠EFC.
由折疊的性質(zhì),可得:∠AEF=∠CEF,
AE=CE,AF=CF,∴∠EFC=∠CEF.
∴CF=CE.
∴AF=CF=CE=AE.
∴四邊形AFCE為菱形.
(2)解 a、b、c三者之間的數(shù)量關(guān)系式為:
a2=b2+c2.理由如下:
由折疊的性質(zhì),得:CE=AE.
∵四邊形ABCD是矩形,∴∠D=90°.
∵AE=a,ED=b,DC=c,∴CE=AE=a.
在Rt△DCE中,CE2=CD2+DE2,
∴a、b、c三者之間的數(shù)量關(guān)系式可寫為:
a2=b2+c2.
科目:初中數(shù)學(xué) 來源: 題型:
A、15° | B、20° | C、25° | D、30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com