【題目】如圖,已知⊙O的直徑AB=10,AC是⊙O的弦.過點C作⊙O的切線DE交AB的延長線于點E,過點A作AD⊥DE,垂足為D,與⊙O交于點F,設(shè)∠DAC、∠CEA的度數(shù)分別為α,β,且0°<α<45°
(1)用含α的代數(shù)式表示β;
(2)連結(jié)OF交AC于點G,若AG=CG,求AC的長.
【答案】(1)β=90°﹣2α;(2)AC=5
【解析】
(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥DE,得到OC∥AD,根據(jù)平行線的性質(zhì)、圓周角定理計算即可;
(2)證明△AGF≌△AGO,根據(jù)全等三角形的性質(zhì)得到OG=GF,根據(jù)勾股定理求出AG,根據(jù)垂徑定理解答即可.
解:(1)連接OC,
∵CE是⊙O的切線,
∴OC⊥DE,又AD⊥DE,
∴OC∥AD,
∴∠ACO=α,
∵OA=OC,
∴∠OAC=∠ACO=α,
∴∠EOC=2α,
∴β=90°﹣2α;
(2)在△AGF和△AGO中,
,
∴△AGF≌△AGO(ASA)
∴OG=GF,
∴OG=OA=,
由勾股定理得,AG=,
∵OF⊥AC,
∴AC=2AG=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】婷婷和她媽媽玩猜拳游戲.規(guī)定每人每次至少要出一個手指,兩人出拳的手指數(shù)之和為偶數(shù)時婷婷獲勝.那么,婷婷獲勝的概率為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,弦AB=8,CD=6,則圖中陰影部分面積為( )
A. π–24 B. 9π C. π–12 D. 9π–6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,E、F是AC上的兩點,當(dāng)E、F滿足下列哪個條件時,四邊形DEBF不一定是平行四邊形( )
A.∠ADE=∠CBFB.∠ABE=∠CDFC.DE=BFD.OE=OF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=45°,過點A作AD⊥BC于點D,點E為AD上一點,且ED=BD.
(1)求證:△ABD≌△CED;
(2)若CE為∠ACD的角平分線,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線:與:相交于點、,與分別交軸于點、,且為線段的中點.
(1)求的值;
(2)若,求的面積;
(3)拋物線的對稱軸為,頂點為,在(2)的條件下:
①點為拋物線對稱軸上一動點,當(dāng)的周長最小時,求點的坐標(biāo);
②如圖12.2,點在拋物線上點與點之間運動,四邊形的面積是否存在最大值?若存在,求出面積的最大值和點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l切⊙O于點A,B為⊙O上一點,過點B作BC⊥l,垂足為點C,連接AB、OB.
(1)求證:∠ABC=∠ABO;
(2)若AB=,AC=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某校九年級學(xué)生為災(zāi)區(qū)捐款情況抽樣調(diào)查的條形圖和扇形統(tǒng)計圖.
(1)求抽樣調(diào)查的人數(shù);
(2)在扇形統(tǒng)計圖中,求該樣本中捐款15元的人數(shù)所占的圓心角度數(shù);
(3)若該校九年級學(xué)生有1000人,據(jù)此樣本估計九年級捐款總數(shù)為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com