【題目】如圖,在同一平面內(nèi),兩條平行的高速公路ABCD之間有一條“L”型道路連通,“L”型道路中的EPFP20千米,∠BEP12°,∠EPF80°,求ABCD之間的距離.(參考數(shù)據(jù):sin12°cos78°≈0.21,sin68°cos22°≈0.93tan68°≈2.48

【答案】22.2km

【解析】

過(guò)PMNABM,交CDN,根據(jù)平行線的性質(zhì)和解直角三角形的方法即可得到結(jié)論.

解:過(guò)PMNABM,交CDN

ABCD,

MNCD,

∴∠FNP=∠PME90°,

∵∠BEP20°,PE20,

PMPEsinPEM20×02142(千米),

∵∠EPM90°12°78°,∠EPF80°,

∴∠FPN22°,

PNPFcosFPN20×093183,

ABCD之間的距離=PM+PN42+183222km).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)計(jì)算:(10+2sin30°-+|2017|

2)如圖,在ABC中,已知∠ABC=30°,將ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)50°后得到A1BC1,若∠A=100°,求證:A1C1BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是某體育看臺(tái)側(cè)面的示意圖,觀眾區(qū)AC的坡度i1:2,頂端C離水平地面AB的高度為15m,頂棚外沿處的點(diǎn)E恰好在點(diǎn)A的正上方,從D處看E處的仰角α30°,豎直的立桿上C,D兩點(diǎn)間的距離為5m

1)求觀眾區(qū)的水平寬度AB

2)求圖1中點(diǎn)E離水平地面的高度EA

3)因?yàn)檎陉?yáng)需要,現(xiàn)將頂棚EDD點(diǎn)逆時(shí)針轉(zhuǎn)動(dòng)11°30′,若E點(diǎn)在地面上的鉛直投影是點(diǎn)F(圖2),求AF.(sin11°30′≈0.20,cos11°30′≈0.98,tan11°30′≈0.20;sin18°30′≈0.32,cos18°30′≈0.95,tan18°30′≈0.33,結(jié)果精確到0.1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售一種商品,若將50件該商品按標(biāo)價(jià)打八折銷售,比按原標(biāo)價(jià)銷售這些商品少獲利200元.

求該商品的標(biāo)價(jià)為多少元;

已知該商品的進(jìn)價(jià)為每件12元,根據(jù)市場(chǎng)調(diào)査:若按中標(biāo)價(jià)銷售,該商場(chǎng)每天銷售100件;每漲1元,每天要少賣5那么漲價(jià)后要使該商品每天的銷售利潤(rùn)最大,應(yīng)將銷售價(jià)格定為每件多少元?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】EFG中,∠G90°,,正方形ABCD的邊長(zhǎng)為1,將正方形ABCDEFG如圖放置,ADEF在一條直線上,點(diǎn)A與點(diǎn)E重合.現(xiàn)將正方形ABCD沿EF方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)A與點(diǎn)F重合時(shí)停止.在這個(gè)運(yùn)動(dòng)過(guò)程中,正方形ABCDEFG重疊部分的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)圖象大致是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象如圖所示,給出以下結(jié)論:①b24ac②2a+b0;③3a+c0④4a2b+c0⑤9a+3b+c0.其中結(jié)論正確的個(gè)數(shù)有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)(學(xué)習(xí)心得)

于彤同學(xué)在學(xué)習(xí)完“圓”這一章內(nèi)容后,感覺到一些幾何問(wèn)題如果添加輔助圓,運(yùn)用圓的知識(shí)解決,可以使問(wèn)題變得非常容易.

例如:如圖1,在△ABC中,ABAC,∠BAC90°,D是△ABC外一點(diǎn),且ADAC,求∠BDC的度數(shù).若以點(diǎn)A為圓心,AB為半徑作輔助⊙A,則點(diǎn)C、D必在⊙A上,∠BAC⊙A的圓心角,而∠BDC是圓周角,從而可容易得到∠BDC   °.

2)(問(wèn)題解決)

如圖2,在四邊形ABCD中,∠BAD=∠BCD90°,∠BDC25°,求∠BAC的度數(shù).

3)(問(wèn)題拓展)

如圖3,如圖,E,F是正方形ABCD的邊AD上兩個(gè)動(dòng)點(diǎn),滿足AEDF.連接CFBD于點(diǎn)G,連接BEAG于點(diǎn)H.若正方形的邊長(zhǎng)為2,則線段DH長(zhǎng)度的最小值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極參與鄂州市全國(guó)文明城市創(chuàng)建活動(dòng),我市某校在教學(xué)樓頂部新建了一塊大型宣傳牌,如下圖.小明同學(xué)為測(cè)量宣傳牌的高度,他站在距離教學(xué)樓底部6米遠(yuǎn)的地面處,測(cè)得宣傳牌的底部的仰角為,同時(shí)測(cè)得教學(xué)樓窗戶處的仰角為(、、、在同一直線上).然后,小明沿坡度的斜坡從走到處,此時(shí)正好與地面平行.

(1)求點(diǎn)到直線的距離(結(jié)果保留根號(hào));

(2)若小明在處又測(cè)得宣傳牌頂部的仰角為,求宣傳牌的高度(結(jié)果精確到0.1米,,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接“51”小長(zhǎng)假的購(gòu)物高峰,大冶雨潤(rùn)某運(yùn)動(dòng)品牌服裝店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種服裝,已知每件甲服裝進(jìn)價(jià)比每件乙服裝進(jìn)價(jià)多20元,售價(jià)在進(jìn)價(jià)的基礎(chǔ)上加價(jià)50%,通過(guò)初步預(yù)算,若以4800元購(gòu)進(jìn)的甲服裝比以4200元購(gòu)進(jìn)乙服裝的件數(shù)少10件.

1)求甲、乙兩種服裝的銷售單價(jià).

2)現(xiàn)老板計(jì)劃購(gòu)進(jìn)兩種服裝共100件,其中甲種服裝不少于65件,若購(gòu)進(jìn)這100件服裝的費(fèi)用不超過(guò)7500元,則甲種服裝最多購(gòu)進(jìn)多少件?

查看答案和解析>>

同步練習(xí)冊(cè)答案