【題目】如圖,△ABC中,DBC的中點(diǎn),過(guò)D點(diǎn)的直線GFACF,交AC的平行線BGG點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EGEF

1)求證:BGCF

2)請(qǐng)你判斷BE+CFEF的大小關(guān)系,并說(shuō)明理由.

【答案】1)證明見(jiàn)解析;(2BE+CFEF.理由見(jiàn)解析.

【解析】試題分析:1)先利用ASA判定△BGD≌△CFD,從而得出BG=CF

2)再利用全等的性質(zhì)可得GD=FD,再有DE⊥GF,從而得出EG=EF,兩邊和大于第三邊從而得出BE+CFEF

試題解析:(1∵BG∥AC,

∴∠DBG=∠DCF

∵DBC的中點(diǎn),

∴BD=CD

∵∠BDG=∠CDF,

△BGD△CFD中,

∴△BGD≌△CFDASA).

∴BG=CF

2BE+CFEF

∵△BGD≌△CFD,

∴GD=FDBG=CF

∵DE⊥FG,

∴EG=EF(垂直平分線到線段端點(diǎn)的距離相等).

△EBG中,BE+BGEG,

BE+CFEF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角三角形ABC內(nèi)接于⊙O,ADBC垂足為D

1)如圖1, BDDC,求∠B的度數(shù)

2)如圖2,BEAC垂足為E,BEAD于點(diǎn)F過(guò)點(diǎn)BBGAD交⊙O于點(diǎn)G,AB邊上取一點(diǎn)H,使得AHBG.求證AFH是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠MAN=120°,點(diǎn)C是∠MAN的平分線AQ上的一個(gè)定點(diǎn),點(diǎn)B,D分別在AN,AM上,連接BD

【發(fā)現(xiàn)】

1)如圖1,若∠ABC=ADC=90°,則∠BCD=   °,CBD   三角形;

【探索】

2)如圖2,若∠ABC+ADC=180°,請(qǐng)判斷CBD的形狀,并證明你的結(jié)論;

【應(yīng)用】

3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點(diǎn)G,H分別在射線OE,OF上,且PGH為等邊三角形,則滿(mǎn)足上述條件的PGH的個(gè)數(shù)一共有   .(只填序號(hào))

2個(gè)3個(gè)4個(gè)4個(gè)以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)解方程: 2;

(2)設(shè)ykx,且k≠0,若代數(shù)式(x3y)(2xy)y(x5y)化簡(jiǎn)的結(jié)果為2x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為深化義務(wù)教育課程改革,某校積極開(kāi)展拓展性課程建設(shè),設(shè)計(jì)開(kāi)設(shè)藝術(shù)、體育、勞技、文學(xué)等多個(gè)類(lèi)別的拓展性課程,要求每一位學(xué)生都自主選擇一個(gè)類(lèi)別的拓展性課程。為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖(部分信息未給出):

根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

(1)求本次被調(diào)查的學(xué)生人數(shù);

(2)將條形圖補(bǔ)充完整;

(3)若該校共有1600名學(xué)生,請(qǐng)估計(jì)全校選擇體育類(lèi)的學(xué)生人數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解九年級(jí)學(xué)生的體能情況,隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并根據(jù)抽測(cè)成績(jī)繪制成如下兩幅統(tǒng)計(jì)圖.

)本次抽測(cè)的學(xué)生總?cè)藬?shù)為__________;請(qǐng)你補(bǔ)全圖的統(tǒng)計(jì)圖.

)本次抽測(cè)成績(jī)的眾數(shù)為__________次;中位數(shù)為__________次.

)若規(guī)定引體向上次以上(含次)為體能達(dá)到優(yōu)秀,則該校名九年級(jí)男生中,估計(jì)有多少人能達(dá)到優(yōu)秀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如右圖,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,ABC的頂點(diǎn)都在方格紙格點(diǎn)上.將ABC向左平移2格,再向上平移4格.

1)請(qǐng)?jiān)趫D中畫(huà)出平移后的ABC,

2)再在圖中畫(huà)出ABC的高CD,

3)在右圖中能使SABC=SPBC的格點(diǎn)P的個(gè)數(shù)有 個(gè)(點(diǎn)P異于A)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為( 。

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)為綠化環(huán)境,計(jì)劃購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共計(jì)n棵.有關(guān)甲、乙兩種樹(shù)苗的信息如圖所示:

(1)當(dāng)n=400時(shí),如果購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共用27000元,那么甲、乙兩種樹(shù)苗各買(mǎi)了多少棵?

(2)實(shí)際購(gòu)買(mǎi)這兩種樹(shù)苗的總費(fèi)用恰好為27000元,其中甲種樹(shù)苗買(mǎi)了m棵.

①寫(xiě)出mn滿(mǎn)足的關(guān)系式;

②要使這批樹(shù)苗的成活率不低于92%,求n的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案