如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y(tǒng)=a(x-6)2+2.6.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m.
(1)求y與x的關系式;(不要求寫出自變量x的取值范圍)
(2)球能否越過球網(wǎng)?球會不會出界?請說明理由.
(1)把點A(0,2)代入關系式得:2=a(-6)2+2.6,
解得:a=-
1
60
,
則y與x的關系式為:y=-
1
60
(x-6)2+2.6;
(2)∵當x=9時,y=-
1
60
(9-6)2+2.6=2.45>2.43,
∴球能越過球網(wǎng);
∵當x=18時,y=-
1
60
(18-6)2+2.6=0.2>0,
∴球會出界.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+2的圖象與y軸相交于點A,與反比例函數(shù)y=
2
x
在第一象限的圖象相交于D、E兩點,已知點D、E分別在正方形ABCO的邊AB、BC上.
(1)求點A、D、E的坐標;
(2)求這個二次函數(shù)的解析式,并用配方法求它的圖象的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點C的坐標為(0,-2),交x軸于A、B兩點,其中A(-1,0),直線l:x=m(m>1)與x軸交于D.
(1)求二次函數(shù)的解析式和B的坐標;
(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=
2
3
x2
的圖象如圖所示,點A0位于坐標原點,點A1,A2,A3,…,A2011在y軸的正半軸上,點B1,B2,B3,…,B2011在二次函數(shù)y=
2
3
x2
位于第一象限的圖象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2010B2011A2011都為等邊三角形,則△A0B1A1的邊長=______,△A2010B2011A2011的邊長=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,是拋物線形拱橋,當拱頂離水面2米時,水面寬4米.若水面下降1米,則水面寬度將增加多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

正方形ABCD邊長為1,E、F、G、H分別為邊AB、BC、CD、DA上的點,且AE=BF=CG=DH.設小正方形EFGH的面積為y,AE=x.則y關于x的函數(shù)圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在平面直角坐標系中,拋物線y=-
5
6
x2+
13
6
x+c與y軸交于點D,與x軸負半軸交于點B(-1,0),直線y=
1
2
x+b與拋物線交于A、B兩點.作△ABD的外接圓⊙M交x軸正半軸于點C,連結CD交AB于點E.
(1)求b、c的值;
(2)求:①點A的坐標;②∠AEC的正切值;
(3)將△BOD繞平面內一點旋轉90°,使得該三角形的對應頂點中的兩個點落在已知拋物線上(如圖2),請直接寫出旋轉中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線與x軸交于A、B兩點(A在B的左側),與y軸交于點C(0,4),頂點為(1,
9
2
).

(1)求拋物線的函數(shù)關系式;
(2)如圖①,設該拋物線的對稱軸與x軸交于點D,試在對稱軸上找出點P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點P的坐標;
(3)如圖②,連結AC、BC,若點E是線段AB上的一個動點(與點A、B不重合),過點E作EFAC交線段BC于點F,連結CE,記△CEF的面積為S,求出S的最大值及此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

利客來超市購進一批20元/千克的綠色食品,如果以30元/千克銷售,那么每天可售出400千克.由銷售經驗知,每天銷售量y(千克)與銷售單價x(元)(x≥30)存在如圖所示的一次函數(shù)關系.
(1)試求出y與x的函數(shù)關系式;
(2)設利客來超市銷售該綠色食品每天獲得利潤p元,當銷售單價為何值時,每天可獲得最大利潤?最大利潤是多少?
(3)該超市經理要求每天利潤不得低于4180元,請你幫助該超市確定綠色食品銷售單價x的范圍.

查看答案和解析>>

同步練習冊答案