【題目】如圖,在中,,,以AB為直徑的半圓OAC于點(diǎn)D,點(diǎn)E上不與點(diǎn)B,D重合的任意一點(diǎn),連接AEBD于點(diǎn)F,連接BE并延長(zhǎng)交AC于點(diǎn)G

1)求證:;

2)填空:

,且點(diǎn)E的中點(diǎn),則DF的長(zhǎng)為   ;

的中點(diǎn)H,當(dāng)的度數(shù)為   時(shí),四邊形OBEH為菱形.

【答案】1)見(jiàn)解析(2)①②30°

【解析】

1)利用直徑所對(duì)的圓周角是直角,可得,再應(yīng)用同角的余角相等可得,易得得證;

2)作,應(yīng)用等弧所對(duì)的圓周角相等得,再應(yīng)用角平分線性質(zhì)可得結(jié)論;由菱形的性質(zhì)可得,結(jié)合三角函數(shù)特殊值可得

解:(1)證明:如圖1,,

AB的直徑,

,

;

2)①如圖2,過(guò)FH點(diǎn)E的中點(diǎn),

,

,

,即

,

,即,

故答案為

②連接OEEH,點(diǎn)H的中點(diǎn),

,

四邊形OBEH為菱形,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于OABO的直徑,弦CDAB交于點(diǎn)E,連接AD,過(guò)點(diǎn)A作直線MN,使∠MAC=∠ADC

1)求證:直線MNO的切線.

2)若sinADC,AB8,AE3,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通工程學(xué)理論把在單向道路上行駛的汽車(chē)看成連續(xù)的流體,并用流量、速度、密度三個(gè)概念描述車(chē)流的基本特征,其中流量q(輛/小時(shí))指單位時(shí)間內(nèi)通過(guò)道路指定斷面的車(chē)輛數(shù);速度v(千米/小時(shí))指通過(guò)道路指定斷面的車(chē)輛速度,密度k(輛/千米)指通過(guò)道路指定斷面單位長(zhǎng)度內(nèi)的車(chē)輛數(shù).

為配合大數(shù)據(jù)治堵行動(dòng),測(cè)得某路段流量q與速度v之間關(guān)系的部分?jǐn)?shù)據(jù)如下表:

速度v(千米/小時(shí))

……

5

10

20

32

40

48

……

流量q(輛/小時(shí))

……

550

1000

1600

1792

1600

1152

……

1)根據(jù)上表信息,下列三個(gè)函數(shù)關(guān)系式中,刻畫(huà)q,v關(guān)系最準(zhǔn)確的是___________.(只填上正確答案的序號(hào))

q=90v+100;②q=;③q=2v2+120v

2)請(qǐng)利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車(chē)流速度為多少時(shí),流量達(dá)到最大?最大流量是多少?

3)已知q,vk滿足q=vk,請(qǐng)結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問(wèn)題.

①市交通運(yùn)行監(jiān)控平臺(tái)顯示,當(dāng)18≤v≤28該路段不會(huì)出現(xiàn)交通擁堵現(xiàn)象.試分析當(dāng)車(chē)流密度k在什么范圍時(shí),該路段不會(huì)出現(xiàn)交通擁堵現(xiàn)象;

②在理想狀態(tài)下,假設(shè)前后兩車(chē)車(chē)頭之間的距離d(米)均相等,當(dāng)d=25米時(shí)請(qǐng)求出此時(shí)的速度v

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,二次函數(shù)(其中,是常數(shù),為正整數(shù))

1)若經(jīng)過(guò)點(diǎn)的值.

2)當(dāng),若軸有公共點(diǎn)時(shí)且公共點(diǎn)的橫坐標(biāo)為非零的整數(shù),確定的值;

3)在(2)的條件下將的圖象向下平移個(gè)單位,得到函數(shù)圖象,求的解析式;

4)在(3)的條件下,將的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象,請(qǐng)結(jié)合新的圖象解答問(wèn)題,若直線有兩個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果連鎖店銷(xiāo)售某種熱帶水果,其進(jìn)價(jià)為20/千克.銷(xiāo)售一段時(shí)間后發(fā)現(xiàn):該水果的日銷(xiāo)量(千克)與售價(jià)(元/千克)的函數(shù)關(guān)系如圖所示:

1)求關(guān)于的函數(shù)解析式;

2)當(dāng)售價(jià)為多少元/千克時(shí),當(dāng)日銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)為多少元?

3)由于某種原因,該水果進(jìn)價(jià)提高了/千克(),物價(jià)局規(guī)定該水果的售價(jià)不得超過(guò)40/千克,該連鎖店在今后的銷(xiāo)售中,日銷(xiāo)售量與售價(jià)仍然滿足(1)中的函數(shù)關(guān)系.若日銷(xiāo)售最大利潤(rùn)是元,請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3cm,BC=4cm,P、Q兩點(diǎn)同時(shí)從點(diǎn)C出發(fā),點(diǎn)P沿從的方向運(yùn)動(dòng),速度為2cm/秒;點(diǎn)Q沿從的方向運(yùn)動(dòng),速度為1cm/.當(dāng)運(yùn)動(dòng)時(shí)間為t秒﹙0≤t≤3.5﹚時(shí),設(shè)△PCQ的面積為ycm2)(當(dāng)P、Q兩點(diǎn)未開(kāi)始運(yùn)動(dòng)時(shí),△PCQ的面積為0.ycm2)和t﹙秒﹚的函數(shù)關(guān)系的圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知以ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過(guò)A,B兩點(diǎn),且與BC邊交于點(diǎn)E,D為弧BE的中點(diǎn),連接AD交OE于點(diǎn)F,若AC=FC

(Ⅰ)求證:AC是O的切線;

(Ⅱ)若BF=5,DF=,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護(hù)環(huán)境,從我做起”為主題的演講比賽. 賽后組委會(huì)整理參賽同學(xué)的成績(jī),并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

分?jǐn)?shù)段(分?jǐn)?shù)為x

頻數(shù)

百分比

60x70

8

20%

70x80

a

30%

80x90

16

b%

90x100

4

10%

請(qǐng)根據(jù)圖表提供的信息,解答下列問(wèn)題:

1)表中的a b ;請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

2)若用扇形統(tǒng)計(jì)圖來(lái)描述成績(jī)分布情況,則分?jǐn)?shù)段70x80對(duì)應(yīng)扇形的圓心角的度數(shù)是 ;

3)競(jìng)賽成績(jī)不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué). 學(xué)校從這4名同學(xué)中隨機(jī)抽2名同學(xué)接受電視臺(tái)記者采訪,則正好抽到一名男同學(xué)和一名女同學(xué)的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市在黨中央實(shí)施精準(zhǔn)扶貧政策的號(hào)召下,大力開(kāi)展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷(xiāo)售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過(guò)100萬(wàn)件,該產(chǎn)品的生產(chǎn)費(fèi)用y(萬(wàn)元)與年產(chǎn)量x(萬(wàn)件)之間的函數(shù)圖象是頂點(diǎn)為原點(diǎn)的拋物線的一部分(如圖①所示);該產(chǎn)品的銷(xiāo)售單價(jià)z(元/件)與年銷(xiāo)售量x(萬(wàn)件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷(xiāo)售完,達(dá)到產(chǎn)銷(xiāo)平衡,所獲毛利潤(rùn)為w萬(wàn)元.(毛利潤(rùn)=銷(xiāo)售額﹣生產(chǎn)費(fèi)用)

(1)請(qǐng)直接寫(xiě)出yx以及zx之間的函數(shù)關(guān)系式;

(2)求wx之間的函數(shù)關(guān)系式;并求年產(chǎn)量多少萬(wàn)件時(shí),所獲毛利潤(rùn)最大?最大毛利潤(rùn)是多少?

(3)由于受資金的影響,今年投入生產(chǎn)的費(fèi)用不會(huì)超過(guò)360萬(wàn)元,今年最多可獲得多少萬(wàn)元的毛利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案