【題目】如圖,在四邊形中,, 的中點.以每秒1個單位長度的速度從點出發(fā),沿向點運動;同時以每秒3個單位長度的速度從 出發(fā),沿向點運動.停止運動時,點也隨之停止運動.當(dāng)運動時間秒時,以點為頂點的四邊形是平行四邊形.的值為_________.

【答案】1秒或3.5

【解析】

分別從當(dāng)Q運動到EB之間、當(dāng)Q運動到EC之間去分析求解即可求得答案.

EBC的中點,

BE=CE= BC=8,

①當(dāng)Q運動到EB之間,設(shè)運動時間為t,則得:

3t8=6t,

解得:t=3.5

②當(dāng)Q運動到EC之間,設(shè)運動時間為t,則得:

83t=6t,

解得:t=1,

∴當(dāng)運動時間t1秒或3.5秒時,以點P,Q,E,D為頂點的四邊形是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0)

(1)求拋物線的解析式和對稱軸;

(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最。咳舸嬖,請求出點P的坐標(biāo);若不存在,請說明理由;

(3)該拋物線有一點Dx,y),使得SABCSDBC,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y =的圖象經(jīng)過點A(1,-3),一次函數(shù)y =kx +b的圖象經(jīng)過點A與點C(0,-4),且與反比例函數(shù)的圖象相交于另一點B.試確定點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,AB兩點的坐標(biāo)分別為A(2,2),B(2,﹣2).對于給定的線段AB及點PQ,給出如下定義:若點Q關(guān)于AB所在直線的對稱點Q′落在△ABP的內(nèi)部(不含邊界),則稱點Q是點P關(guān)于線段AB的內(nèi)稱點.

(1)已知點P(4,﹣1).

Q1(1,﹣1),Q2(1,1)兩點中,是點P關(guān)于線段AB的內(nèi)稱點的是   ;

若點M在直線yx﹣1上,且點M是點P關(guān)于線段AB的內(nèi)稱點,求點M的橫坐標(biāo)xM的取值范圍;

(2)已知點C(3,3),⊙C的半徑為r,點D(4,0),若點E是點D關(guān)于線段AB的內(nèi)稱點,且滿足直線DEC相切,求半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C1:y=mx2﹣2mx+m+4與y軸交于點A(0,3),與x軸交于點B、C(點B在點C左側(cè)).

(1)求該拋物線的解析式;

(2)求點B的坐標(biāo);

(3)若拋物線C2:y=a(x﹣1)2﹣1(a≠0)與線段AB恰有一個公共點,結(jié)合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C1:y=mx2﹣2mx+m+4與y軸交于點A(0,3),與x軸交于點B、C(點B在點C左側(cè)).

(1)求該拋物線的解析式;

(2)求點B的坐標(biāo);

(3)若拋物線C2:y=a(x﹣1)2﹣1(a≠0)與線段AB恰有一個公共點,結(jié)合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy的中,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)ym≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐標(biāo)為(6,n),線段OA,Ex軸上一點,且tan∠AOE

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求△A0B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識再現(xiàn)

如圖1,若點,在直線同側(cè),的距離分別是32,,現(xiàn)在直線上找一點,使的值最小,做法如下:

作點關(guān)于直線的對稱點,連接,與直線的交點就是所求的點,線段的長度即為的最小值,請你求出這個最小值.

實踐應(yīng)用

如圖2,菱形,,點,分別為線段,,上的任意一點,則的最小值為______

拓展延伸

如圖3,在四邊形的對角線上找一點,使,保留作圖痕跡,不必寫出作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD是等腰△ABC底邊上的高,且tanBAC上有一點E,滿足AECE=2:3.那么tan∠ADE的值是_____

查看答案和解析>>

同步練習(xí)冊答案