【題目】如圖,點(diǎn)在以為直徑的上,與過點(diǎn)的切線垂直,垂足為交于點(diǎn),過作交于點(diǎn),連接.
(1)求證:;
(2)已知,過作交于,連接,求的長.
【答案】(1)見詳解;(2)
【解析】
(1)連接OC,根據(jù)切線的性質(zhì)得出OC⊥CD,即可證得OC∥AD,根據(jù)平行線的性質(zhì)以及等腰三角形的性質(zhì)得出∠DAB=2∠F,進(jìn)而即可證得結(jié)論;
(2)連接AF、AC,延長CO交⊙O于H,過O作OG⊥AE于G,首先根據(jù)平行線的性質(zhì)證得∠ACH=∠HCF然后根據(jù)垂徑定理證得AH=FH,根據(jù)垂直平分線的性質(zhì)得出AC=FC,進(jìn)而通過證得四邊形OCDG是矩形求得半徑,然后根據(jù)勾股定理求得OG.得出CD,最后根據(jù)勾股定理求得AC,從而求得FC.
(1)證明:連接OC,
∵CD是⊙O的切線,
∴OC⊥CD,
∵AD⊥CD,
∴OC∥AD,
∴∠BOC=∠DAB,
由圓周角定理得,∠BOC=2∠F,
∴∠DAB=2∠F,
∵AD∥BF,
∴∠B=∠DAB,
∴∠B=2∠F;
(2)解:連接AF、AC,延長CO交⊙O于H,過O作OG⊥AE于G,
∵OC∥AD,AE∥BF,
∴OC∥BF,
∴∠F=∠HFF,
∵∠B=2∠F,
∴∠B=2∠HCF,
∵∠ACF=∠B,
∴∠ACF=2∠HCF,
∴∠ACH=∠HCF,
,
∴CH垂直平分AF,
∴CF=AC,
∵OG⊥AE,
∴AG=EG=4,
∴GD=GE+ED=4+2=6,
∵∠OGD=∠D=∠OCD=90°,
∴四邊形OCDG是矩形,
∴OC=GD=6,OG=CD,
∵OA=OC=6,AG=4,
,
,
在中,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC=90°,對(duì)角線AC,BD交于點(diǎn)O,DE平分∠ADC交BC于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=4,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:
(1)這次活動(dòng)共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的正方形中,動(dòng)點(diǎn)分別以相同的速度從兩點(diǎn)同時(shí)出發(fā)向點(diǎn)和點(diǎn)運(yùn)動(dòng)(任何一個(gè)點(diǎn)到達(dá)即停止),連接與交于點(diǎn),過點(diǎn)作交于點(diǎn)交于點(diǎn),連接,則線段的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)的直線與直線相交于點(diǎn),動(dòng)點(diǎn)沿路線運(yùn)動(dòng).
(1)求直線的解析式;
(2)設(shè)的面積,點(diǎn)的橫坐標(biāo)為,求出與的關(guān)系式;
(3)是否存在點(diǎn),使是直角三角形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)是邊上一點(diǎn),連接,以為直徑的交于點(diǎn)則線段的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組在探究函數(shù)y=|x2-4x+3|的圖象和性質(zhì)時(shí),經(jīng)歷以下幾個(gè)學(xué)習(xí)過程:
(1)列表(完成以下表格)
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y1=x2-4x+3 | … | 15 | 8 | 0 | 0 | 3 | 15 | … | |||
y=|x2-4x+3| | … | 15 | 8 | 0 | 0 | 3 | 15 | … |
(2)描點(diǎn)并畫出函數(shù)圖象草圖(在備用圖1中描點(diǎn)并畫圖)
(3)根據(jù)圖象完成以下問題
(ⅰ)觀察圖象
函數(shù)y=|x2-4x+3|的圖象可由函數(shù)y1=x2-4x+3的圖象如何變化得到?
答:______.
(ⅱ)數(shù)學(xué)小組探究發(fā)現(xiàn)直線y=8與函數(shù)y=|x2-4x+3|的圖象交于點(diǎn)E、F,E(-1,8),F(5,8),則不等式|x2-4x+3|>8的解集是______;
(ⅲ)設(shè)函數(shù)y=|x2-4x+3|的圖象與x軸交于A、B兩點(diǎn)(B位于A的右側(cè)),與y軸交于點(diǎn)C.
①求直線BC的解析式;
②探究應(yīng)用:將直線BC沿y軸平移m個(gè)單位后與函數(shù)y=|x2-4x+3|的圖象恰好有3個(gè)交點(diǎn),求此時(shí)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com