精英家教網 > 初中數學 > 題目詳情

【題目】機動車行駛到斑馬線要禮讓行人等交通法規(guī)實施后,某校數學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調查了部分學生,調查結果分為四種:非常了解,比較了解,基本了解,不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請結合圖中所給信息解答下列問題:

本次共調查______名學生;扇形統(tǒng)計圖中C所對應扇形的圓心角度數是______;

補全條形統(tǒng)計圖;

該校共有800名學生,根據以上信息,請你估計全校學生中對這些交通法規(guī)非常了解的有多少名?

【答案】160,;(2)補圖見解析;(3320.

【解析】

A的人數及其所占百分比可得總人數,用乘以C人數所占比例即可得;

總人數乘以D的百分比求得其人數,再根據各類型人數之和等于總人數求得B的人數,據此補全圖形即可得;

用總人數乘以樣本中A類型的百分比可得.

解:本次調查的學生總人數為人,扇形統(tǒng)計圖中C所對應扇形的圓心角度數是,

故答案為:60、

類型人數為,

B類型人數為

補全條形圖如下:

估計全校學生中對這些交通法規(guī)非常了解的有名.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,從熱氣球C上測得兩建筑物A、B底部的俯角分別為30°60度.如果這時氣球的高度CD90米.且點AD、B在同一直線上,求建筑物A、B間的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側),與y軸交于點C.將拋物線m繞點B旋轉180°,得到新的拋物線n,它的頂點為C1,與x軸的另一個交點為A1.若四邊形AC1A1C為矩形,則a,b應滿足的關系式為( 。

A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=7.5,AC=9,SABC=.動點PA點出發(fā),沿AB方向以每秒5個單位長度的速度向B點勻速運動,動點QC點同時出發(fā),以相同的速度沿CA方向向A點勻速運動,當點P運動到B點時,P、Q兩點同時停止運動,以PQ為邊作正PQM(P、Q、M按逆時針排序),以QC為邊在AC上方作正QCN,設點P運動時間為t秒.

(1)求cosA的值;

(2)當PQMQCN的面積滿足SPQM=SQCN時,求t的值;

(3)當t為何值時,PQM的某個頂點(Q點除外)落在QCN的邊上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,yx的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】重慶某中學組織七、八、九年級學生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計圖中九年級參賽作文篇數對應的圓心角是 度,并補全條形統(tǒng)計圖;

(2)經過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在?,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在?系母怕剩

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標中,菱形ABCO的頂點O在坐標原點,且與反比例函數y的圖象相交于Am,3),C兩點,已知點B22),則k的值為( 。

A. 6B. 6C. 6D. 6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】元旦前夕,某企業(yè)接到一批粽子生產任務,約定這批粽子的出廠價為每只4元,按要求在20天內完成.為了按時完成任務,該企業(yè)招收了新工人,設新工人小丁第天生產的粽子數量為只,滿足如下關系:

1)小丁第幾天生產的粽子數量為280只?

2)如圖,設第天生產的每只粽子的成本是元,之間的關系可用圖中的函數圖象來刻畫.若小丁第天創(chuàng)造的利潤為元,求之間的函數表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀理解:給定一個矩形,如果存在另一個矩形,它的周長和面積分別是已知矩形的周長和面積的2倍,則這個矩形是給定矩形的加倍矩形.如圖,矩形是矩形加倍矩形.

解決問題:

1)當矩形的長和寬分別為32時,它是否存在加倍矩形?若存在,求出加倍矩形的長與寬,若不存在,請說明理由.

2)邊長為的正方形存在加倍正方形嗎?請做出判斷,并說明理由.

查看答案和解析>>

同步練習冊答案