精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,AB=AC,DBC的中點,AC的垂直平分線分別交AC、AD、AB于點EF、G.

(1)F到△ABC的邊_______的距離相等,點F到△ABC的頂點______的距離相等.

(2)BC=6,AD=9,求AF的值.

(3)連接CGAD于點H,當∠BAC是多少度時,△FGH為等腰三角形?

【答案】1AC,AB;AB、C;(25;(345°36°.

【解析】

1)根據等腰三角形性質,AD平分∠BAC,AD垂直平分BC,FAD上,根據角平分線性質解答;EF垂直平分AC,所以F為兩邊垂直平分線的交點.根據垂直平分線性質解答.

2)連接FC,根據垂直平分線的性質得到AF=CF,設AF=x,CF=x,DF=9-x,CD=BC=3,故利用RtFCD得到方程進行求解;

3)根據△FGH為等腰三角形分三種情況分別討論,根據垂直平分線與三角形的內角和即可求解.

1)∵ABAC,DBC的中點,

AD平分∠BACAD垂直平分BC

∵點FAD上,

∴點FAC、AB的距離相等;

EF垂直平分AC,AD垂直平分BC

FAFBFC,即點FA、B、C的距離相等.

故答案為 AC、AB; AB、C

2)連接FC,根據垂直平分線的性質得到AF=CF,

AF=x,CF=x,DF=9-x,CD=BC=3,

RtFCD中,

解得x=5,

AF=5;

3)①當FG=HG時,故∠GFH=∠GHF,

∠GFH=∠EFA,∠EFA+∠EAF=90°,

同理∠CHD+∠HCD=90°

∠EAF =∠HCD,

AD垂直平分BC,

∠EAF =∠BAD,

∠HCD=∠BAD

ADBC,∠B=B

∴CG⊥AB,

EG垂直平分AC,

AG=CG

∠BAC=45°,

②當FH=HG時,故∠HFG=∠HGF,

∠GFH=∠EFA,∠EFA+∠EAF=90°,

∠HGF+∠ECG=90°

∠EAF=∠ECG

EG垂直平分AC∴∠ECG=∠EAG

∴此情況不存在;

③當FH=FG時,故∠FHG=∠FGH

∠FHG =∠CHD,∠CHD+∠HCD=90°,

∠HGF+∠ECG=90°

∠EAF=∠ECG

∠ECG =∠HCD,

AD垂直平分BC,

∠ECG =∠BAC

∠BAC=a,故∠ACG=∠HCD=a,ACB=2a,

AB=AC,ABC=ACB=2a

∠BAC+ABC+ACB=5a=180°,

解得x=36°,

綜上:∠BAC45°36°時,△FGH為等腰三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若整數a既使關于x的分式方程的解為正數,又使關于x的一元二次方程x2﹣2x+2a﹣5=0有實數解,則符合條件的所有a的和是( 。

A. 0 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】海南建省30年來,各項事業(yè)取得令人矚目的成就,以2016年為例,全省社會固定資產總投資約3730億元,其中包括中央項目、省屬項目、地(市)屬項目、縣(市)屬項目和其他項目.圖1、圖2分別是這五個項目的投資額不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請完成下列問題:

(1)在圖1中,先計算地(市)屬項目投資額為   億元,然后將條形統(tǒng)計圖補充完整;

(2)在圖2中,縣(市)屬項目部分所占百分比為m%、對應的圓心角為β,則m=   ,β=   度(m、β均取整數).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是以O為圓心的半圓的直徑,半徑COAO,點M上的動點,且不與點A、C、B重合,直線AM交直線OC于點D,連結OMCM.

(1)若半圓的半徑為10.

①當∠AOM=60°時,求DM的長;

②當AM=12時,求DM的長.

(2)探究:在點M運動的過程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為使中華傳統(tǒng)文化教育更具有實效性,軍寧中學開展以我最喜愛的傳統(tǒng)文化種類為主題的調查活動,圍繞在詩詞、國畫、對聯(lián)、書法、戲曲五種傳統(tǒng)文化中,你最喜愛哪一種?(必選且只選一種)的問題,在全校范圍內隨機抽取部分學生進行問卷調查,將調查結果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據圖中提供的信息回答下列問題:

(1)本次調查共抽取了多少名學生?

(2)通過計算補全條形統(tǒng)計圖;

(3)若軍寧中學共有960名學生,請你估計該中學最喜愛國畫的學生有多少名?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,∠C=90°,點A、B分別在∠C的兩直角邊上,AC=1,BC=2.

判斷: .(填有理數無理數

畫圖:人類經歷了漫長、曲折的歷史過程,發(fā)現了無理數是客觀存在的.

1)在圖中畫出長度為的線段,并說明理由;

2)在射線CA上畫出長度為的線段.(注:保留畫圖痕跡,并把所畫線段標注出來)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1所示,OA是⊙O的半徑,點DOA上的一動點,過D作線段CDOA交⊙O于點F,過點C作⊙O的切線BC,B為切點,連接AB,交CD于點E.

(1)求證:CB=CE;

(2)如圖2,當點D運動到OA的中點時,CD剛好平分,求證:BCE是等邊三角形;

(3)如圖3,當點D運動到與點O重合時,若⊙O的半徑為2,且∠DCB=45°,求線段EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點,分別是等邊,上的動點,點從頂點向點運動,點從頂點向點運動,兩點同時出發(fā),且它們的速度都相同.

(1)連接交于點,則在,運動的過程中,的大小發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數;

(2)如圖2,若點,Q在運動到終點后繼續(xù)在射線,上運動,直線、交點為,則的大小發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小磊要制作一個三角形的鋼架模型,在這個三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個三角形的面積S(單位:cm2)x(單位:cm)的變化而變化.

1)請直接寫出Sx之間的函數關系式(不要求寫出自變量x的取值范圍);

2)當x是多少時,這個三角形面積S最大?最大面積是多少?

查看答案和解析>>

同步練習冊答案