【題目】如圖,過點(diǎn)P(2,)作x軸的平行線交y軸于點(diǎn)A,交雙曲線于點(diǎn)N,作PM⊥AN交雙曲線于點(diǎn)M,連接AM,若PN=4.

(1)求k的值;

(2)設(shè)直線MN解析式為y=ax+b,求不等式的解集.

【答案】(1) (2)0<x≤2或x≥6

【解析】

(1)首先根據(jù)點(diǎn)P(2,)的坐標(biāo)求出N點(diǎn)的坐標(biāo),代入反比例函數(shù)解析式即可求出;

(2)利用圖形兩函數(shù)誰在上上面誰大,交點(diǎn)坐標(biāo)即是函數(shù)大小的分界點(diǎn),可以直接判斷出函數(shù)的大小關(guān)系.

解:(1)依題意,則AN=4+2=6,

N(6,2),

N(6,2)代入y=得:

xy=12,

k=12

(2)M點(diǎn)橫坐標(biāo)為2,

M點(diǎn)縱坐標(biāo)為:=6,

M(2,6),

∴由圖象知,≥ax+b的解集為:

0<x≤2x≥6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,若⊙O的半徑為3,則陰影部分的面積為__(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)興趣小組的活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng),將邊長(zhǎng)為2的正方形ABCD與邊長(zhǎng)為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請(qǐng)你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請(qǐng)你幫他求出此時(shí)BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有RtABC,∠BAC=90°,AB=AC,A(-3,0),B(0,1),C(m,n)。

(1)請(qǐng)直接寫出C點(diǎn)坐標(biāo)。

(2)ABC 沿x軸的正方向平移t個(gè)單位,、兩點(diǎn)的對(duì)應(yīng)點(diǎn)、正好落在反比例函數(shù)在第一象限內(nèi)圖象上。請(qǐng)求出t,k的值。

(3)(2)的條件下,問是否存x軸上的點(diǎn)M和反比例函數(shù)圖象上的點(diǎn)N,使得以、M、N為頂點(diǎn)的四邊形構(gòu)成平行四邊形?如果存在,請(qǐng)求出所有滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車銷售公司2月份銷售新上市一種新型低能耗汽車20輛,由于該型汽車的優(yōu)越的經(jīng)濟(jì)適用性,銷量快速上升,4月份該公司銷售該型汽車達(dá)45輛.

(1)求該公司銷售該型汽車3月份和4月份的平均增長(zhǎng)率;

(2)該型汽車每輛的進(jìn)價(jià)為10萬元;且銷售a輛汽車,汽車廠返利銷售公司0.03a萬元/輛,該公司的該型車售價(jià)為11萬元/輛,若使5月份每輛車盈利不低于2.6萬元,那么該公司5月份至少需要銷售該型汽車多少輛?此時(shí)總盈利至少是多少萬元?(盈利=銷售利潤(rùn)+返利)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為維護(hù)南海主權(quán),我海軍艦艇加強(qiáng)對(duì)南海海域的巡航,日上午時(shí),我海巡號(hào)艦艇在觀察點(diǎn)處觀測(cè)到其正東方向海里處有一燈塔,該艦艇沿南偏東的方向航行,時(shí)到達(dá)觀察點(diǎn),測(cè)得燈塔位于其北偏西方向,求該艦艇的巡航速度?(結(jié)果保留整數(shù))

(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防疾病,某單位對(duì)辦公室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,yx成反比例(如圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:

(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為________,自變量x的取值范為________;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為________.

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)員工方可進(jìn)辦公室,那么從消毒開始,至少需要經(jīng)過________分鐘后,員工才能回到辦公室;

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB=AC,以AB為直徑的⊙OBC于點(diǎn)D,交AC于點(diǎn)E.

(1)當(dāng)∠BAC為銳角時(shí),如圖,求證:∠CBE=∠BAC;

(2)當(dāng)∠BAC為鈍角時(shí),如圖②,CA的延長(zhǎng)線與⊙O相交于點(diǎn)E,(1)中的結(jié)論是否仍然成立?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,以邊AB為直徑作O,交斜邊BCD,E在弧上,連接AE、EDDA,連接AE、ED、DA

(1)求證:∠DAC=∠AED;

(2)若點(diǎn)E的中點(diǎn),AEBC交于點(diǎn)F,當(dāng)BD=5,CD=4時(shí),求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案