【題目】如圖,小華在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進30米到達C處,又測得頂部E的仰角為60°,求大樓EF的高度.(結果精確到0.1米,參考數(shù)據(jù) =1.732)

【答案】解:∵∠EDG=60°,∠EBG=30°,
∴∠DEB=30°,
∴DE=DB=30米,
在Rt△EDG中,sin∠EDG= ,
∴EG=EDsin∠EDG=15 ≈25.98,
∴EF=25.98+1.5≈27.5,
答:大樓EF的高度約為27.5米.
【解析】根據(jù)三角形的外角的性質(zhì)求出∠DEB=30°,根據(jù)等腰三角形的性質(zhì)求出DE,根據(jù)正弦的概念求出EG,計算即可.
【考點精析】根據(jù)題目的已知條件,利用關于仰角俯角問題的相關知識可以得到問題的答案,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明新家裝修,在裝修客廳時,購進彩色地磚和單色地磚共100塊,共花費5600元.已知彩色地磚的單價是80/塊,單色地磚的單價是40/塊.

(1)兩種型號的地磚各采購了多少塊?

(2)如果廚房也要鋪設這兩種型號的地磚共60塊,且采購地磚的費用不超過3200元,那么彩色地磚最多能采購多少塊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反映的過程是小濤從家出發(fā),去菜地澆水,又去玉米地鋤草,然后回家.其中x表示時間,y表示小濤離家的距離.

(1)菜地離小濤家的距離是____km,小濤走到菜地用了____min,小濤給菜地澆水用了___min.

(2)菜地離玉米地的距離是____km,小濤從菜地到地用了____min,小濤給玉米地鋤草用了____min.

(3)玉米地離小濤家的距離是___km,小濤從玉米地走回家的平均速度是____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠AOB=90°,射線OA繞點O逆時針方向以每秒6°的速度旋轉(zhuǎn)(當旋轉(zhuǎn)角度等于360°時,OA停止旋轉(zhuǎn)),同時OB繞點O以每秒2°的速度旋轉(zhuǎn)(當OA停止旋轉(zhuǎn)時,OB同樣停止旋轉(zhuǎn)).求當OA旋轉(zhuǎn)多少秒,旋轉(zhuǎn)后的OA與OB形成的角度為50°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知點M(0,2),直線y= x+4與兩坐標軸分別交于A,B兩點,P、Q分別是線段OA,AB上的動點,則PQ+MP的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y= x﹣2與x軸交于點A,與y軸交于點C,經(jīng)過A、C兩點的拋物線與軸交于另一點B(1,0).

(1)求該拋物線的解析式.
(2)在直線y= x﹣2上方的拋物線上存在一動點D,連接AD、CD,設點D的橫坐標為m,△DCA的面積為S,求S與m的函數(shù)關系式,并求出S的最大值.
(3)在拋物線上是否存在一點M,使得以M為圓心,以 為半徑的圓與直線AC相切?若存在,請求出點M的坐標;若不存在,請說明理由.
(4)在y軸的正半軸上存在一點P,使∠APB的值最大,請直接寫出當∠APB最大時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,以大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,得四邊形ABEF.

求證:四邊形ABEF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古籍《周髀算經(jīng)》中早有記載“勾三股四弦五”,下面我們來探究兩類特殊的勾股數(shù).通過觀察完成下面兩個表格中的空格(以下a、b、c為Rt△ABC的三邊,且a<b<c):

表一 表二

a

b

c

a

b

c

3

4

5

6

8

10

5

12

13

8

15

17

7

24

25

10

24

26

9

41

12

37

(1)仔細觀察,表一中a為大于1的奇數(shù),此時b、c的數(shù)量關系是_____________,

a、b、c之間的數(shù)量關系是_________________________;

(2)仔細觀察,表二中a為大于4的偶數(shù),此時b、c的數(shù)量關系是_____________,

a、b、c之間的數(shù)量關系是_________________________

(3)我們還發(fā)現(xiàn),表一中的三邊長“3,4,5”與表二中的“6,8,10”成倍數(shù)關系,表一中的“5,12,13”與表二中的“10,24,26”恰好也成倍數(shù)關系……請直接利用這一規(guī)律計算:在Rt△ABC中,當時,斜邊c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E點為DF上的點,B為AC上的點,,,求證:DF∥AC.

證明:∵ (已知),∠1=∠3,∠2=∠4( ),

∴∠3=∠4(等量代換).

∴____________________( ).

∴∠C=∠ABD( ).

∵∠C=∠D( ),

∴∠D=__________( ).

∴AC∥DF( ).

查看答案和解析>>

同步練習冊答案