【題目】為上標(biāo)保障我國海外維和部隊(duì)官兵的生活,現(xiàn)需通過A港口、B港口分別運(yùn)送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運(yùn)送物資到港口的費(fèi)用(元/噸)如表所示:
(1)設(shè)從甲倉庫運(yùn)送到A港口的物資為x噸,求總運(yùn)費(fèi)y(元)與x(噸)之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求出最低費(fèi)用,并說明費(fèi)用最低時(shí)的調(diào)配方案.
【答案】(1)y=﹣8x+2560(30≤x≤80);(2)把甲倉庫的全部運(yùn)往A港口,再從乙倉庫運(yùn)20噸往A港口,乙倉庫的余下的全部運(yùn)往B港口.
【解析】
試題(1)設(shè)從甲倉庫運(yùn)x噸往A港口,根據(jù)題意得從甲倉庫運(yùn)往B港口的有(80﹣x)噸,從乙倉庫運(yùn)往A港口的有噸,運(yùn)往B港口的有50﹣(80﹣x)=(x﹣30)噸,再由等量關(guān)系:總運(yùn)費(fèi)=甲倉庫運(yùn)往A港口的費(fèi)用+甲倉庫運(yùn)往B港口的費(fèi)用+乙倉庫運(yùn)往A港口的費(fèi)用+乙倉庫運(yùn)往B港口的費(fèi)用列式并化簡,即可得總運(yùn)費(fèi)y(元)與x(噸)之間的函數(shù)關(guān)系式;由題意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因?yàn)樗玫暮瘮?shù)為一次函數(shù),由增減性可知:y隨x增大而減少,則當(dāng)x=80時(shí),y最小,并求出最小值,寫出運(yùn)輸方案.
試題解析:(1)設(shè)從甲倉庫運(yùn)x噸往A港口,則從甲倉庫運(yùn)往B港口的有(80﹣x)噸,
從乙倉庫運(yùn)往A港口的有噸,運(yùn)往B港口的有50﹣(80﹣x)=(x﹣30)噸,
所以y=14x+20+10(80﹣x)+8(x﹣30)=﹣8x+2560,
x的取值范圍是30≤x≤80.
(2)由(1)得y=﹣8x+2560y隨x增大而減少,所以當(dāng)x=80時(shí)總運(yùn)費(fèi)最小,
當(dāng)x=80時(shí),y=﹣8×80+2560=1920,
此時(shí)方案為:把甲倉庫的全部運(yùn)往A港口,再從乙倉庫運(yùn)20噸往A港口,乙倉庫的余下的全部運(yùn)往B港口.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“雙十一”購物街中,某兒童品牌玩具專賣店購進(jìn)了兩種玩具,其中類玩具的金價(jià)比玩具的進(jìn)價(jià)每個(gè)多元.經(jīng)調(diào)查發(fā)現(xiàn):用元購進(jìn)類玩具的數(shù)量與用元購進(jìn)類玩具的數(shù)量相同.
(1)求的進(jìn)價(jià)分別是每個(gè)多少元?
(2)該玩具店共購進(jìn)了兩類玩具共個(gè),若玩具店將每個(gè)類玩具定價(jià)為元出售,每個(gè)類玩具定價(jià)元出售,且全部售出后所獲得的利潤不少于元,則該淘寶專賣店至少購進(jìn)類玩具多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的布袋中裝有1個(gè)紅球,2個(gè)白球,它們除顏色外其余完全相同.
(1)從袋中任意摸出兩個(gè)球,試用樹狀圖或表格列出所有等可能的結(jié)果,并求摸出的球恰好是兩個(gè)白球的概率;
(2)若在布袋中再添加a個(gè)白球,充分?jǐn)噭,從中摸出一個(gè)球,使摸到紅球的概率為,試求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=10,以AB為直徑作半圓O,半徑OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到OC,點(diǎn)A的對(duì)應(yīng)點(diǎn)為C,當(dāng)點(diǎn)C與點(diǎn)B重合時(shí)停止.連接BC并延長到點(diǎn)D,使得CD=BC,過點(diǎn)D作DE⊥AB于點(diǎn)E,連接AD,AC.
(1)AD= ;
(2)如圖1,當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),判斷△ABD的形狀,并說明理由;
(3)如圖2,當(dāng)OE=1時(shí),求BC的長;
(4)如圖3,若點(diǎn)P是線段AD上一點(diǎn),連接PC,當(dāng)PC與半圓O相切時(shí),直接寫出直線PC與AD的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學(xué)在校外實(shí)踐活動(dòng)中對(duì)此開展測量活動(dòng).如圖,在橋外一點(diǎn)A測得大橋主架與水面的交匯點(diǎn)C的俯角為α,大橋主架的頂端D的仰角為β,已知測量點(diǎn)與大橋主架的水平距離AB=a,則此時(shí)大橋主架頂端離水面的高CD為( )
A.asinα+asinβB.acosα+acosβC.atanα+atanβD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,AD=1,AB=3,∠DAB=60°,點(diǎn)E為邊CD上一動(dòng)點(diǎn),過點(diǎn)C作AE的垂線交AE的延長線于點(diǎn)F.
(1)求∠D的度數(shù);
(2)若點(diǎn)E為CD的中點(diǎn),求EF的值;
(3)當(dāng)點(diǎn)E在線段CD上運(yùn)動(dòng)時(shí),是否存在最大值?若存在,求出該最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一節(jié)數(shù)學(xué)活動(dòng)課上,王老師將本班學(xué)生身高數(shù)據(jù)(精確到1厘米)出示給大家,要求同學(xué)們各自獨(dú)立繪制一幅頻數(shù)分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經(jīng)王老師批改,甲繪制的圖是正確的,乙在數(shù)據(jù)整理與繪圖過程中均有個(gè)別錯(cuò)誤.
(1)寫出乙同學(xué)在數(shù)據(jù)整理或繪圖過程中的錯(cuò)誤(寫出一個(gè)即可);
(2)甲同學(xué)在數(shù)據(jù)整理后若用扇形統(tǒng)計(jì)圖表示,則159.5﹣164.5這一部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為 ;
(3)該班學(xué)生的身高數(shù)據(jù)的中位數(shù)是 ;
(4)假設(shè)身高在169.5﹣174.5范圍的5名同學(xué)中,有2名女同學(xué),班主任老師想在這5名同學(xué)中選出2名同學(xué)作為本班的正、副旗手,那么恰好選中一名男同學(xué)和一名女同學(xué)當(dāng)正,副旗手的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在⊙O中,弦AB與CD相交于點(diǎn)F,∠BCD=68°,∠CFA=108°,求∠ADC的度數(shù).
(2)如圖2,在正方形ABCD中,點(diǎn)E是CD上一點(diǎn)(DE>CE),連接AE,并過點(diǎn)E作AE的垂線交BC于點(diǎn)F,若AB=9,BF=7,求DE長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com