【題目】對任意一個(gè)兩位數(shù)m,如果m等于兩個(gè)正整數(shù)的平方和,那么稱這個(gè)兩位數(shù)m為“平方和數(shù)”,若m=a2+b2(a、b為正整數(shù)),記A(m)=ab.例如:29=22+52,29就是一個(gè)“平方和數(shù)”,則A(29)=2×5=10.
(1)判斷25是否是“平方和數(shù)”,若是,請計(jì)算A(25)的值;若不是,請說明理由;
(2)若k是一個(gè)“平方和數(shù)”,且A(k)=,求k的值.
【答案】(1)25是“平方和數(shù)”,A(25)=12;(2)k的值為10或20或34或52或74
【解析】
(1)把25寫成兩個(gè)正整數(shù)的平方和,再根據(jù)A(m)=ab求出A(25)便可;
(2)設(shè)k=a2+b2,則A(k)=ab,根據(jù)(k)=,得a、b的方程,求得a與b的關(guān)系式,進(jìn)而由a、b、k滿足的條件求得k的值便可.
(1)25是“平方和數(shù)”
∵25=32+42
∴A(25)=3×4=12
故答案為:25是“平方和數(shù)”,A(25)=12
(2)設(shè)k=a2+b2,則A(k)=ab
∵A(k)=
∴ab=
∴2ab=a2+b2﹣4
∴a2﹣2ab+b2=4
∴(a﹣b)2=4
∴a﹣b=±2,即a=b+2或b=a+2,
∵a、b為正整數(shù),k為兩位數(shù),
∴當(dāng)a=1,b=3或a=3,b=1時(shí),k=10;
當(dāng)a=2,b=4或a=4,b=2時(shí),k=20;
當(dāng)a=3,b=5或a=5,b=3時(shí),k=34;
當(dāng)a=4,b=6或a=6,b=4時(shí),k=52;
當(dāng)a=5,b=7或a=7,b=5時(shí),k=74;
綜上,k的值為:10或20或34或52或74.
故答案為:k的值為10或20或34或52或74
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,點(diǎn)P為邊AC上一點(diǎn),且AP=5cm.點(diǎn)Q為邊AB上的任意一點(diǎn)(不與點(diǎn)A,B重合),若點(diǎn)A關(guān)于直線PQ的對稱點(diǎn)A'恰好落在△ABC的邊上,則AQ的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個(gè)高腳杯截面圖,杯體呈拋物線狀(杯體厚度不計(jì)),點(diǎn)是拋物線的頂點(diǎn),,點(diǎn)是的中點(diǎn),當(dāng)高腳杯中裝滿液體時(shí),液面,此時(shí)最大深度(液面到最低點(diǎn)的距離)為,將高腳杯繞點(diǎn)緩緩傾斜倒出部分液體,當(dāng)時(shí)停止,此時(shí)液面為,則液面到平面的距離是________________;此時(shí)杯體內(nèi)液體的最大深度為_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長線上,PA=AO,PD與⊙O相切于點(diǎn)D,BC⊥AB交PD的延長線于點(diǎn)C,若⊙O的半徑為1,則BC的長是( 。
A.1.5B.2C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=2,∠ABC=45°,點(diǎn)E為射線AD上一動點(diǎn),連接BE,將BE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BF,連接AF,則AF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,為邊上一動點(diǎn)(不與點(diǎn)重合),以為邊長作正方形,連接,則的面積的最大值等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張矩形紙板和圓形紙板按如圖方式分別剪得同樣大定理特例圖(AC=3,BC=4,AB=5,分別以三邊長向外剪正方形) ,圖1中邊HI、LM和點(diǎn)K、J都恰好在矩形紙板的邊上,圖2中的圓心O在AB中點(diǎn)處,點(diǎn)H、I都在圓上,則矩形和圓形紙板的面積比是( )
A.400:127πB.484:145πC.440:137πD.88:25π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線交軸于、兩點(diǎn)(點(diǎn)在點(diǎn)的右邊)交軸于點(diǎn),.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)是第一象限拋物線上的點(diǎn),連接,過點(diǎn)作于點(diǎn),,求的面積;
(3)如圖3,在(2)的條件下,連接交于點(diǎn),點(diǎn)是第四象限拋物線上的點(diǎn),連接交于點(diǎn),交軸于點(diǎn),,過點(diǎn)作直線軸于點(diǎn),過點(diǎn)作軸,交直線于點(diǎn),點(diǎn)是拋物線對稱軸右側(cè)第一象限拋物線上的點(diǎn),連接、,的延長線交于點(diǎn),連接并延長交于點(diǎn),.求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形ABCD是邊長為5的菱形,頂點(diǎn)A.C.D均在坐標(biāo)軸上,sinB=.
(1)求過A,C,D三點(diǎn)的拋物線的解析式;
(2)記直線AB的解析式為y1=mx+n,(1)中拋物線的解析式為y2=ax2+bx+c,求當(dāng)y1>y2時(shí),自變量x的取值范圍;
(3)設(shè)直線AB與(1)中拋物線的另一個(gè)交點(diǎn)為E,P點(diǎn)為拋物線上A,E兩點(diǎn)之間的一個(gè)動點(diǎn),且直線PE交x軸于點(diǎn)F,問:當(dāng)P點(diǎn)在何處時(shí),△PAE的面積最大?并求出面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com