20.已知點A(a,1)與點B(5,b)關(guān)于原點對稱,則a、b值分別是( 。
A.a=1,b=5B.a=5,b=1C.a=-5,b=1D.a=-5,b=-1

分析 關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).

解答 解:由題意,得
a=-5,b=-1,
故選:D.

點評 本題考查了關(guān)于原點對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:關(guān)于x軸對稱的點,橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.甲乙兩同學(xué)用一副撲克牌中牌面數(shù)字分別是3,4,5,6的4張牌做抽數(shù)字游戲,游戲規(guī)則是:將這4張牌的正面全部朝下,洗勻,從中隨機抽取一張,抽得的數(shù)作為十位上的數(shù)字,抽出的牌不放回,然后將剩下的牌洗勻,再從中隨機抽取一張,抽得的數(shù)作為個位上的數(shù)字,這樣就得到一個兩位數(shù),若這個兩位數(shù)小于45,則甲獲勝,否則乙獲勝.你認(rèn)為這個游戲公平嗎?請利用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.計算
(1)(-3ab-12•(a-2b2-3
(2)$\frac{a-b}{a}$÷(a-$\frac{2ab-^{2}}{a}$).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.我市某校開展“經(jīng)典誦讀”比賽活動,誦讀材料有《論語》,《三字經(jīng)》,《弟子規(guī)》(分別用字母A、B、C依次表示這三個誦讀材料),將A、B、C這三個字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗勻后放在桌面上.小華和小敏參加誦讀比賽,比賽時小華先從中隨機抽取一張卡片,記錄下卡片上的內(nèi)容,放回后洗勻,再由小敏從中隨機抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進(jìn)行誦讀比賽.
(1)小華誦讀《弟子規(guī)》的概率是$\frac{1}{3}$;
(2)請用列表法或畫樹狀圖法求小華和小敏誦讀兩個不同材料的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,任意畫一個∠A=60°的△ABC,再分別作△ABC的兩條角平分線BE和CD,BE和CD相交于點P,連接AP,有以下結(jié)論:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBD+S△PCE=S△PBC,其中正確的個數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.如果水位升高6m時水位變化記為+6m,那么水位下降6m時水位變化記為( 。
A.-3 mB.3 mC.6 mD.-6 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.(1)己知,如圖1,△ABC是⊙O的內(nèi)接正三角形,點P為弧BC上一動點,請?zhí)骄縋A,PB,PC三者之間有何數(shù)量關(guān)系,并給予證明.
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點P為弧BC上一動點,請?zhí)骄縋A,PB,PC三者之間有何數(shù)量關(guān)系,并給予證明.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點P為弧BC上一動點,請?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.某校為學(xué)生編號,設(shè)定末尾用1表示男生,用2表示女生.如果1608132表示“2016年入學(xué)的8班13號的同學(xué)是位女生”,那么2017年入學(xué)的1班37號男生的編號是1701371.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(x1,y1),點Q的坐標(biāo)為(x2,y2),若a=|x1-x2|,b=|y1-y2|,則記作(P,Q)→{a,b }.
(1)已知(P,Q)→{a,b },且點P(1,1),點Q(4,3),求a,b的值;
(2)點P(0,-1),a=2,b=1,且(P,Q)→{a,b },求符合條件的點Q的坐標(biāo);
(3)⊙O的半徑為$\sqrt{5}$,點P在⊙O上,點Q(m,n)在直線y=-$\frac{1}{2}$x+$\frac{9}{2}$上,若(P,Q)→{a,b },且a=2k,b=k (k>0),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案