【題目】我校“點愛”社團倡導全校學生參加“關注特殊兒童”自愿捐款活動,并對此次活動進行抽樣調(diào)查,得到一組學生捐款情況的數(shù)據(jù),將數(shù)據(jù)整理成如圖所示的統(tǒng)計圖(圖中信息不完整).已知A、B兩組捐款人數(shù)的比為1:5.請結合以上信息解答下列問題.
組別 | 捐款額x/元 | 人數(shù) |
A | 1≤x<10 | |
B | 10≤x<20 | 100 |
C | 20≤x<30 | |
D | 30≤x<40 | |
E | x≥40 |
(1)a= ,本次抽樣調(diào)查樣本的容量是 ;
(2)補全“捐款人數(shù)分組統(tǒng)計圖1”;
(3)若記A組捐款的平均數(shù)為5元,B組捐款的平均數(shù)為15元,C組捐款的平均數(shù)為25元,D組捐款的平均數(shù)為35元,E組捐款的平均數(shù)為50元,全校共有2000名學生參加此次活動,請你估計此次活動可以籌得善款的金額大約為多少元.
【答案】(1)20,500;(2)補全“捐款人數(shù)分組統(tǒng)計圖”如圖所示;見解析;(3)估計此次活動可以籌得善款的金額大約為54000元.
【解析】
(1)由B組人數(shù)為100且A、B兩組捐款人數(shù)的比為1:5可得a的值,用A、B組人數(shù)和除以其所占百分比可得總人數(shù);
(2)先求出C組人數(shù),繼而可補全圖形;
(3)先求出抽查的500名學生的平均捐款數(shù),再乘以總人數(shù)可得.
(1)a=100×=20,
本次調(diào)查樣本的容量是:(100+20)÷(1-40%-28%-8%)=500,
故答案為:20,500;
(2)∵500×40%=200,
∴C組的人數(shù)為200,
補全“捐款人數(shù)分組統(tǒng)計圖1”如右圖所示;
(3)∵A組對應百分比為×100%=4%,B組對應的百分比為×100%=20%,
∴抽查的500名學生的平均捐款數(shù)為5×4%+15×20%+25×40%+35×28%+50×8%=27(元),
則估計此次活動可以籌得善款的金額大約為2000×27=54000(元).
科目:初中數(shù)學 來源: 題型:
【題目】宿豫區(qū)教育局在動員教師學習“黨的十九大”精神活動中,組織全區(qū)教師參加了“黨的十九大知識競賽”,賽后隨機抽取了某校部分教師的成績,按從低分到高分將成績分成A,B,C,D,E五組:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100(滿分100分).繪制成下面兩個不完整的統(tǒng)計圖:
根據(jù)上面提供的信息解答下列問題:
(1)D類所對應的圓心角是 度,樣本中成績的中位數(shù)落在 類中;
(2)補全條形統(tǒng)計圖;
(3)若將D、E兩組成績定為優(yōu)秀,全區(qū)參加本次“黨的十九大知識競賽”共有2000名教師,估計全區(qū)參加競賽達到優(yōu)秀的教師共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y= 的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關系是( 。
A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,4),點B在一象限,點P(t,0)是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉,使邊AO與AB重合,連接OD,PD,得△OPD。
(1)當t=時,求DP的長
(2)在點P運動過程中,依照條件所形成的△OPD面積為S
①當t>0時,求S與t之間的函數(shù)關系式
②當t≤0時,要使s=,請直接寫出所有符合條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線L:y=ax2+bx+3與x軸交于A(1,0),B(3,0)兩點,與y軸交于點C,頂點為D.
(1)求拋物線的函數(shù)表達式及頂點D的坐標;
(2)若將拋物線L沿y軸平移后得到拋物線L′,拋物線L′經(jīng)過點E(4,1),與y軸的交點為C′,頂點為D′,在拋物線L′上是否存在點M,使得△MCC′的面積是△MDD′面積的2倍?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若四邊形的一條對角線把四邊形分成兩個等腰三角形,則這條對角線叫做這個四邊形的“巧分線”,這個四邊形叫“巧妙四邊形”,若一個四邊形有兩條巧分線,則稱為“絕妙四邊形.
(1)下列四邊形一定是巧妙四邊形的是 .(填序號)
①平行四邊形;②矩形;③菱形;④正方形.
(初步應用)
(2)如圖,在絕妙四邊形ABCD中,AC=AD,且AC垂直平分BD,若∠BAD=80°,求∠BCD的度數(shù).
(深入研究)
(3)在巧妙四邊形ABCD中,AB=AD=CD,∠A=90°,AC是四邊形ABCD的巧分線,請直接寫出∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑假到了,即將迎來手機市場的銷售旺季.某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:
甲 | 乙 | |
進價(元/部) | 4000 | 2500 |
售價(元/部) | 4300 | 3000 |
該商場計劃投入15.5萬元資金,全部用于購進兩種手機若干部,期望全部銷售后可獲毛利潤不低于2萬元.(毛利潤=(售價﹣進價)×銷售量)
(1)若商場要想盡可能多的購進甲種手機,應該安排怎樣的進貨方案購進甲乙兩種手機?
(2)通過市場調(diào)研,該商場決定在甲種手機購進最多的方案上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,在矩形 ABCD 中,點 E 以 lcm/s 的速度從點 A 向點 D 運動,運動時間為 t(s),連結 BE,過點 E 作 EF⊥BE,交 CD 于 F,以 EF 為直徑作⊙O.
(1)求證:∠1=∠2;
(2)如圖 2,連結 BF,交⊙O 于點 G,并連結 EG.已知 AB=4,AD=6.
①用含 t 的代數(shù)式表示 DF 的長
②連結 DG,若△EGD 是以 EG 為腰的等腰三角形,求 t 的值;
(3)連結 OC,當 tan∠BFC=3 時,恰有 OC∥EG,請直接寫出 tan∠ABE 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com