【題目】有一座拋物線形拱橋,校下面在正常水位時AB寬20米,水位上升3米就達到警戒線CD,這時水面寬度為10米.

(1)在如圖的坐標系中,求拋物線的表達式;
(2)若洪水到來是水位以0.2米/時的速度上升,從正常水位開始,再過幾小時能到達橋面?

【答案】
(1)解:設所求拋物線的解析式為y=ax2

設D(5,b),則B(10,b﹣3),

把D、B的坐標分別代入y=ax2得: ,解得 ,

∴拋物線的解析式為y=﹣ x2


(2)解:∵b=﹣1,∴拱橋頂O到CD的距離為1,

∴(1+3)÷0.2=20(小時),

所以再過20小時到達拱橋頂


【解析】(1)設所求拋物線的解析式為y=ax2 . 把D(5,b),則B(10,b﹣3)代入解方程組即可.(2)根據(jù)時間=路程÷速度計算即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,BC=3,AC=4,點P在以C為圓心,5為半徑的圓上,連結PA,PB.若PB=4,則PA的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.

(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的實數(shù)).
其中正確的結論有(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線y=ax2+2ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組用儀器測測量湛江海灣大橋主塔的高度.如圖,在距主塔從AE60米的D處.用儀器測得主塔頂部A的仰角為68°,已知測量儀器的高CD=1.3米,求主塔AE的高度(結果精確到0.1米)
(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組用儀器測測量湛江海灣大橋主塔的高度.如圖,在距主塔從AE60米的D處.用儀器測得主塔頂部A的仰角為68°,已知測量儀器的高CD=1.3米,求主塔AE的高度(結果精確到0.1米)
(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD四邊的中點分別為E,F(xiàn),G,H,對角線AC與BD相交于點O,若四邊形EFGH的面積是3,則四邊形ABCD的面積是(
A.3
B.6
C.9
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂總D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.
(結果精確到0.1m。參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)

(1)求∠BCD的度數(shù).
(2)求教學樓的高BD

查看答案和解析>>

同步練習冊答案