【題目】如圖,△ABC中,∠BAC75°,BC7,△ABC的面積為14,D BC邊上一動(dòng)點(diǎn)(不與B,C重合),將△ABD和△ACD分別沿直線AB,AC翻折得到△ABE與△ACF,那么△AEF的面積最小值為_____

【答案】4

【解析】

如圖,作EEGAF,交FA的延長(zhǎng)線于G,利用折疊的性質(zhì)得出AFAEAD,∠BAE=∠BAD,∠DAC=∠FAC,然后進(jìn)一步得出EGAEAD,根據(jù)當(dāng)ADBC時(shí),AD最短進(jìn)一步求取最小值即可.

如圖,過(guò)EEGAF,交FA的延長(zhǎng)線于G

由折疊可得,AFAEAD,∠BAE=∠BAD,∠DAC=∠FAC

又∵∠BAC75°,

∴∠EAF150°

∴∠EAG30°,

EGAEAD

當(dāng)ADBC時(shí),AD最短,

BC7,△ABC的面積為14

∴當(dāng)ADBC時(shí),AD4AEAF

∴△AEF的面積最小值為: AF×EG×4×24,

故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:三角形一邊上的點(diǎn)將該邊分為兩條線段,且這兩條線段的積等于這個(gè)點(diǎn)到該邊所對(duì)頂點(diǎn)連線的平方,則稱這個(gè)點(diǎn)為三角形該邊的好點(diǎn)”.如圖1,ABC中,點(diǎn)DBC邊上一點(diǎn),連結(jié)AD,若,則稱點(diǎn)DABCBC邊上的好點(diǎn)”.

1)如圖2,ABC的頂點(diǎn)是網(wǎng)格圖的格點(diǎn),請(qǐng)僅用直尺畫出AB邊上的一個(gè)好點(diǎn)”.

2ABC中,BC=9,,點(diǎn)DBC邊上的好點(diǎn),求線段BD的長(zhǎng).

3)如圖3,ABC的內(nèi)接三角形,OHAB于點(diǎn)H,連結(jié)CH并延長(zhǎng)交于點(diǎn)D.

①求證:點(diǎn)HBCDCD邊上的好點(diǎn)”.

②若的半徑為9,∠ABD=90°,OH=6,請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)AAEBC,垂足為E,連接DEF為線段DE上一點(diǎn),且AFE=B

1)求證:ADF∽△DEC

2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.

(1)yx的函數(shù)表達(dá)式;

(2)若改造后觀花道的面積為13m2,求x的值;

(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共5只,某學(xué)習(xí)小組做摸球試驗(yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近   ;隨機(jī)摸出一個(gè)球,摸到白球的概率是   ,摸到黑球的概率是   

2)試估算:口袋中黑球的個(gè)數(shù)   ,白球的個(gè)數(shù)   ;

3)從口袋中任意摸出一個(gè)球,記下顏色后放回口袋中攪拌均勻,再任意摸出一個(gè)球,兩次摸到的球的顏色正好相同的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是長(zhǎng)為10m,傾斜角為30°的自動(dòng)扶梯,平臺(tái)BD與大樓CE垂直,且與扶梯AB的長(zhǎng)度相等,在B處測(cè)得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin65°=0.90,tan65°=2.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為A3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C

1)求m的值;

2)求點(diǎn)B的坐標(biāo);

3)該二次函數(shù)圖像上有一點(diǎn)Dxy)(其中,),使,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,AB2,AD3O為邊AD上一點(diǎn),以O為圓心,OA為半徑r作⊙O,過(guò)點(diǎn)B作⊙O的切線BF,F為切點(diǎn).

1)如圖1,當(dāng)⊙O經(jīng)過(guò)點(diǎn)C時(shí),求⊙O截邊BC所得弦MC的長(zhǎng)度;

2)如圖2,切線BF與邊AD相交于點(diǎn)E,當(dāng)FEFO時(shí),求r的值;

3)如圖3,當(dāng)⊙O與邊CD相切時(shí),切線BF與邊CD相交于點(diǎn)H,設(shè)BCH、四邊形HFOD、四邊形FOAB的面積分別為S1S2、S3,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖,則下列敘述正確的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 將該函數(shù)圖象向左平移2個(gè)單位后所得到拋物線的解析式為yax2c

查看答案和解析>>

同步練習(xí)冊(cè)答案