【題目】旋轉變換是解決數(shù)學問題中一種重要的思想方法,通過旋轉變換可以將分散的條件集中到一起,從而方便解決問題.
已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.
(1)如圖1,當α=60°時,將△AEC繞點A順時針旋轉60°到△AFB的位置,連接DF,
①求∠DAF的度數(shù);
②求證:△ADE≌△ADF;
(2)如圖2,當α=90°時,猜想BD、DE、CE的數(shù)量關系,并說明理由;
(3)如圖3,當α=120°,BD=4,CE=5時,請直接寫出DE的長為 .
【答案】(1)①30°②見解析(2)BD2+CE2=DE2(3)
【解析】
(1)①利用旋轉的性質得出∠FAB=∠CAE,再用角的和即可得出結論;②利用SAS判斷出△ADE≌△ADF,即可得出結論;
(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結論;
(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出結論.
解:(1)①由旋轉得,∠FAB=∠CAE,
∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,
∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;
②由旋轉知,AF=AE,∠BAF=∠CAE,
∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,
在△ADE和△ADF中,,
∴△ADE≌△ADF(SAS);
(2)BD2+CE2=DE2,
理由:如圖2,將△AEC繞點A順時針旋轉90°到△AFB的位置,連接DF,
∴BF=CE,∠ABF=∠ACB,
由(1)知,△ADE≌△ADF,
∴DE=DF,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,
根據(jù)勾股定理得,BD2+BF2=DF2,
即:BD2+CE2=DE2;
(3)如圖3,將△AEC繞點A順時針旋轉90°到△AFB的位置,連接DF,
∴BF=CE,∠ABF=∠ACB,
由(1)知,△ADE≌△ADF,
∴DE=DF,BF=CE=5,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=30°,
∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,
過點F作FM⊥BC于M,
在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,
BF=5,
∴,
∵BD=4,
∴DM=BD﹣BM=,
根據(jù)勾股定理得, ,
∴DE=DF=,
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點,與y軸交于點C,連接AB,AC,BC.
求拋物線的表達式;
求證:AB平分;
拋物線的對稱軸上是否存在點M,使得是以AB為直角邊的直角三角形,若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B地.甲車先出發(fā)勻速駛向B地,40min后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時.由于滿載貨物,為了行駛安全,速度減少了50km/h,結果與甲車同時到達B地.甲乙兩車距A地的路程y(km)與乙車行駛時間x(h)之間的函數(shù)圖象如圖所示,則下列說法中正確的有( )
①;②甲的速度是60km/h;③乙出發(fā)80min追上甲;④乙剛到達貨站時,甲距B地180km.
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在三角形紙片ABC中,已知∠ABC=90,AC=5,BC=4,過點A作直線l平行于BC,折疊三角形紙片ABC,使直角頂點B落在直線l上的點P處,折痕為MN,當點P在直線l上移動時,折痕的端點M、N也隨之移動,若限定端點M、N分別在AB、BC邊上(包括端點)移動,則線段AP長度的最大值與最小值的差為________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在長方形中,BC=3,動點從出發(fā),以每秒1個單位的速度,沿射線方向移動,作關于直線的對稱,設點的運動時間為
(1)當P點在線段BC上且不與C點重合時,若直線PB’與直線CD相交于點M,且∠PAM=45°,試求:AB的長
(2)若AB=4
①如圖2,當點B’落在AC上時,顯然△PCB’是直角三角形,求此時t的值
②是否存在異于圖2的時刻,使得△PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小,此時∠MAN的度數(shù)為_________°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,E為BC中點,AE⊥BC于點E,AF⊥CD于點F,CG∥AE,CG交AF于點H,交AD于點G.
(1)求菱形ABCD的面積;(2)求∠CHA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.(1)請用兩種不同的方法求圖②中陰影部分的面積:
方法1: 方法2:
(2)觀察圖②請你寫出下列三個代數(shù)式:(m+n)2,(m﹣n)2,mn之間的等量關系. ;
(3)根據(jù)(2)題中的等量關系,解決:已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們有時會碰上形如,,的式子,其實我們可以將其進一步分母有理化.
形如的式子還可以用以下方法化簡:.(*)
(1)請用不同的方法化簡(寫出化簡過程):
(i)參照分母有理化的方法得______________________________;
(ii)參照(*)式的化簡方法得______________________________.
(2)化簡:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com