【題目】在△ABC中,∠ACB是銳角,點(diǎn)D在射線BC上運(yùn)動(dòng),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到AE,連接EC.
(1)操作發(fā)現(xiàn):若AB=AC,∠BAC=90°,當(dāng)D在線段BC上時(shí)(不與點(diǎn)B重合),如圖①所示,請(qǐng)你直接寫出線段CE和BD的位置關(guān)系和數(shù)量關(guān)系是_____,_____;
(2)猜想論證:
在(1)的條件下,當(dāng)D在線段BC的延長(zhǎng)線上時(shí),如圖②所示,請(qǐng)你判斷(1)中結(jié)論是否成立,并證明你的判斷.
(3)拓展延伸:
如圖③,若AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng),試探究:當(dāng)銳角∠ACB等于_____度時(shí),線段CE和BD之間的位置關(guān)系仍成立(點(diǎn)C、E重合除外)?此時(shí)若作DF⊥AD交線段CE于點(diǎn)F,且當(dāng)AC=3時(shí),請(qǐng)直接寫出線段CF的長(zhǎng)的最大值是_____
【答案】 CE=BD,CE⊥BD CE=BD,CE⊥BD 45°,.
【解析】解:(1)①∵AB=AC,∠BAC=90°,
∴線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,
∴AD=AE,∠BAD=∠CAE,
∴△BAD≌△CAE,
∴CE=BD,∠ACE=∠B,
∴∠BCE=∠BCA+∠ACE=90°,
∴線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系為:CE=BD,CE⊥BD;
故答案為:CE=BD,CE⊥BD;
(2)(1)中的結(jié)論仍然成立.理由如下:如圖2,
∵線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,
∴AE=AD,∠DAE=90°,
∵AB=AC,∠BAC=90°
∴∠CAE=∠BAD,
∴△ACE≌△ABD,
∴CE=BD,∠ACE=∠B,
∴∠BCE=90°,
所以線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系為:CE=BD,CE⊥BD;
(3)
過(guò)A作AM⊥BC于M,過(guò)E點(diǎn)作EN垂直于MA延長(zhǎng)線于N,如圖3,
∵線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,
∴∠DAE=90°,AD=AE,
∴∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,
∴NE=AM,
∵CE⊥BD,即CE⊥MC,∴∠NEC=90°,
∴四邊形MCEN為矩形,
∴NE=MC,∴AM=MC,
∴∠ACB=45°,
∵四邊形MCEN為矩形,
∴Rt△AMD∽R(shí)t△DCF,
∴,設(shè)DC=x,
∵在Rt△AMC中,∠ACB=45°,AC=3,
∴AM=CM=3,MD=3﹣x,∴,
∴CF=﹣x2+x=﹣(x﹣)2+,
∴當(dāng)x=時(shí)有最大值,最大值為.
故答案為:45°,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若(3x+a)(3x+b)的結(jié)果中不含有x項(xiàng),則a、b的關(guān)系是( )
A.ab=1
B.ab=0
C.a﹣b=0
D.a+b=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【感知】如圖①,△ABC是等邊三角形,點(diǎn)D、E分別在AB、BC邊上,且AD=BE,易知:△ADC≌△BEA.
【探究】如圖②,△ABC是等邊三角形,點(diǎn)D、E分別在邊BA、CB的延長(zhǎng)線上,且AD=BE,△ADC與△BEA還全等嗎?如果全等,請(qǐng)證明:如果不全等,請(qǐng)說(shuō)明理由.
【拓展】如圖③,在△ABC中,AB=AC,∠1=∠2,點(diǎn)D、E分別在BA、FB的延長(zhǎng)線上,且AD=BE,若AF=CF=2BE,S△ABF=6,則S△BCD的大小為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A.(a3)4=a7
B.a8÷a4=a2
C.(2a2)3a3=8a9
D.4a5﹣2a5=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算結(jié)果正確的是( )
A.3a﹣a=2
B.(a﹣b)2=a2﹣b2
C.6ab2÷(﹣2ab)=﹣3b
D.a(a+b)=a2+b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD與AC相交于點(diǎn)E,AB=9,cos∠BAC=,tan∠DBC=.
求:(1)邊CD的長(zhǎng);
(2)△BCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象與x軸的正半軸相交于點(diǎn)A(2,0)和點(diǎn)B、與y軸相交于點(diǎn)C,它的頂點(diǎn)為M、對(duì)稱軸與x軸相交于點(diǎn)N.
(1)用b的代數(shù)式表示頂點(diǎn)M的坐標(biāo);
(2)當(dāng)tan∠MAN=2時(shí),求此二次函數(shù)的解析式及∠ACB的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項(xiàng)是( )
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com