【題目】若(3x+a)(3x+b)的結(jié)果中不含有x項(xiàng),則a、b的關(guān)系是( 。
A.ab=1
B.ab=0
C.a﹣b=0
D.a+b=0

【答案】D
【解析】(3x+a)(3x+b)=9x2+3bx+3ax+ab=9x2+3(a+b)x+ab,∵(3x+a)(3x+b)的結(jié)果中不含有x項(xiàng),∴a+b=0,∴a、b的關(guān)系是a+b=0;故選D.
根據(jù)多項(xiàng)式乘多項(xiàng)式的運(yùn)算法則,展開后令x的一次項(xiàng)的系數(shù)為0,即可得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市雙城同創(chuàng)的工作中,某社區(qū)計(jì)劃對(duì)1200m2的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo),由甲、乙兩個(gè)施工隊(duì)來完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為300m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用3天.

(1)甲、乙兩施工隊(duì)每天分別能完成綠化的面積是多少?

(2)設(shè)先由甲隊(duì)施工x天,再由乙隊(duì)施工y天,剛好完成綠化任務(wù),求y與x的函數(shù)關(guān)系式.

(3)若甲隊(duì)每天綠化費(fèi)用為0.4萬元,乙隊(duì)每天綠化費(fèi)用為0.15萬元,且甲、乙兩隊(duì)施工的總天數(shù)不超過14天,則如何安排甲、乙兩隊(duì)施工的天數(shù),使施工費(fèi)用最少?并求出最少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在建筑工地上,工人師傅砌門時(shí),常用木條 EF固定長方形門框,使其不變形,這種做法的根據(jù)是___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1)(x﹣1)(x+3=12;(2)(x﹣32=3﹣x;(33x2+52x+1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點(diǎn)(-2,-3)向上平移3個(gè)單位長度,則平移后的點(diǎn)的坐標(biāo)為( )

A. (-2,0) B. (-2,1) C. (0,-2) D. (1,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì),參加南充市2016年高中階段學(xué)校招生考試的人數(shù)為55354人,這個(gè)數(shù)用科學(xué)記數(shù)法表示為( )
A.0.55354×105
B.5.5354×105
C.5.5354×104
D.55.354×103

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=ax-b的圖象經(jīng)過一、二、三象限,且與x軸交于點(diǎn)(-2,0),則不等式ax>b的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,下列各點(diǎn)在第四象限的是(

A.21B.2,-1C.(-21D.(-2,-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB是銳角,點(diǎn)D在射線BC上運(yùn)動(dòng),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到AE,連接EC.

(1)操作發(fā)現(xiàn):若AB=AC,∠BAC=90°,當(dāng)D在線段BC上時(shí)(不與點(diǎn)B重合),如圖①所示,請(qǐng)你直接寫出線段CE和BD的位置關(guān)系和數(shù)量關(guān)系是__________;

(2)猜想論證:

在(1)的條件下,當(dāng)D在線段BC的延長線上時(shí),如圖②所示,請(qǐng)你判斷(1)中結(jié)論是否成立,并證明你的判斷.

(3)拓展延伸:

如圖③,若AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng),試探究:當(dāng)銳角∠ACB等于_____度時(shí),線段CE和BD之間的位置關(guān)系仍成立(點(diǎn)C、E重合除外)?此時(shí)若作DF⊥AD交線段CE于點(diǎn)F,且當(dāng)AC=3時(shí),請(qǐng)直接寫出線段CF的長的最大值是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案