如果兩個(gè)不同的方程x2+ax+b=0與x2+bx+a=0只有一個(gè)公共根,那么a,b滿足的關(guān)系式為________.

a+b+1=0(a≠b)
分析:設(shè)公共根為t,根據(jù)方程解的定義得到t2+at+b=0,t2+bt+a=0,再把兩個(gè)方程相減得(a-b)=a-b,然后根據(jù)t有唯一的值解得t=1,再把t=1代入原來的任意一個(gè)方程即可得到a、b的關(guān)系.
解答:設(shè)公共根為t,
則t2+at+b=0,t2+bt+a=0,
∴(a-b)=a-b,
∵t有唯一的值,
∴a-b≠0,
∴t=1,
把t=1代入x2+ax+b=0得a+b+1=0.
故答案為a+b+1=0(a≠b).
點(diǎn)評(píng):本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因?yàn)橹缓幸粋(gè)未知數(shù)的方程的解也叫做這個(gè)方程的根,所以,一元二次方程的解也稱為一元二次方程的根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線y=
1
2
x2-x+2.
(1)確定此拋物線的對(duì)稱軸方程和頂點(diǎn)坐標(biāo);
(2)如圖,若直線l:y=kx(k>0)分別與拋物線交于兩個(gè)不同的點(diǎn)A、B,與直線y=-x+4相交于點(diǎn)P,試證
OP
OA
+
OP
OB
=2;
(3)在(2)中,是否存在k值,使A、B兩點(diǎn)的縱坐標(biāo)之和等于4?如果存在,求出k值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=數(shù)學(xué)公式x2-x+2.
(1)確定此拋物線的對(duì)稱軸方程和頂點(diǎn)坐標(biāo);
(2)如圖,若直線l:y=kx(k>0)分別與拋物線交于兩個(gè)不同的點(diǎn)A、B,與直線y=-x+4相交于點(diǎn)P,試證數(shù)學(xué)公式=2;
(3)在(2)中,是否存在k值,使A、B兩點(diǎn)的縱坐標(biāo)之和等于4?如果存在,求出k值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•烏魯木齊)已知拋物線y=x2-x+2.
(1)確定此拋物線的對(duì)稱軸方程和頂點(diǎn)坐標(biāo);
(2)如圖,若直線l:y=kx(k>0)分別與拋物線交于兩個(gè)不同的點(diǎn)A、B,與直線y=-x+4相交于點(diǎn)P,試證=2;
(3)在(2)中,是否存在k值,使A、B兩點(diǎn)的縱坐標(biāo)之和等于4?如果存在,求出k值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年新疆烏魯木齊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•烏魯木齊)已知拋物線y=x2-x+2.
(1)確定此拋物線的對(duì)稱軸方程和頂點(diǎn)坐標(biāo);
(2)如圖,若直線l:y=kx(k>0)分別與拋物線交于兩個(gè)不同的點(diǎn)A、B,與直線y=-x+4相交于點(diǎn)P,試證=2;
(3)在(2)中,是否存在k值,使A、B兩點(diǎn)的縱坐標(biāo)之和等于4?如果存在,求出k值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案