【題目】12分)已知點(diǎn)P是線段AB上與點(diǎn)A不重合的一點(diǎn),且APPBAP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角αα≤90°)得到AP1,BP繞點(diǎn)B順時(shí)針也旋轉(zhuǎn)角α得到BP2,連接PP1、PP2

1)如圖1,當(dāng)α=90°時(shí),求∠P1PP2的度數(shù);

2)如圖2,當(dāng)點(diǎn)P2AP1的延長(zhǎng)線上時(shí),求證:△P2P1P∽△P2PA;

3)如圖3,過(guò)BP的中點(diǎn)El1⊥BP,過(guò)BP2的中點(diǎn)Fl2⊥BP2,l1l2交于點(diǎn)Q,連接PQ,求證:P1P⊥PQ

【答案】190°;(2)見(jiàn)解析;(3)見(jiàn)解析.

【解析】

試題此題主要考查了幾何變換綜合以及相似三角形的判定和全等三角形的判定與性質(zhì)等知識(shí),得出Rt△QBE≌Rt△QBF是解題關(guān)鍵.(1)利用旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形得出∠APP1=∠BPP2=45°,進(jìn)而得出答案;(2)根據(jù)題意得出△PAP1△PBP2均為頂角為α的等腰三角形,進(jìn)而得出∠P1PP2=∠PAP2,求出△P2P1P∽△P2PA;(3)首先連結(jié)QB,得出Rt△QBE≌Rt△QBF,利用∠P1PQ=180°﹣∠APP1﹣∠QPB求出即可.

試題解析:(1)解:由旋轉(zhuǎn)的性質(zhì)得:AP=AP1,BP=BP2∵α=90°,

∴△PAP1△PBP2均為等腰直角三角形, ∴∠APP1=∠BPP2=45°,

∴∠P1PP2=180°﹣∠APP1﹣∠BPP2=90°;

2)證明:由旋轉(zhuǎn)的性質(zhì)可知△PAP1△PBP2均為頂角為α的等腰三角形, ∴∠APP1=∠BPP2=90°﹣α,

∴∠P1PP2=180°﹣∠APP1+∠BPP2=180°﹣290°α,

△PP2P1△P2PA中,∠P1PP2=∠PAP2, 又∵∠PP2P1=∠AP2P, ∴△P2P1P∽△P2PA

3)證明:如圖,連接QB∵l1l2分別為PB,P2B的中垂線, ∴EB=BP,FB=BP2

BP=BP2, ∴EB=FB. 在Rt△QBERt△QBF中,∴Rt△QBE≌Rt△QBF,

∴∠QBE=∠QBF=∠PBP2=α, 由中垂線性質(zhì)得:QP=QB, ∴∠QPB=∠QBE=α,

由(2)知∠APP1=90°﹣α, ∴∠P1PQ=180°﹣∠APP1﹣∠QPB=180°﹣90°﹣α)-α=90°,

P1P⊥PQ

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在日常生活中我們經(jīng)常會(huì)使用到訂書(shū)機(jī),如圖MN是裝訂機(jī)的底座,AB是裝訂機(jī)的托板AB始終與底座平行,連接桿DED點(diǎn)固定,點(diǎn)EAB處滑動(dòng),壓柄BC繞著轉(zhuǎn)軸B旋轉(zhuǎn).已知連接桿BC的長(zhǎng)度為20cm,BD=cm,壓柄與托板的長(zhǎng)度相等.

1)當(dāng)托板與壓柄的夾角∠ABC=30°時(shí),如圖①點(diǎn)EA點(diǎn)滑動(dòng)了2cm,求連接桿DE的長(zhǎng)度.

2)當(dāng)壓柄BC從(1)中的位置旋轉(zhuǎn)到與底座垂直,如圖②.求這個(gè)過(guò)程中,點(diǎn)E滑動(dòng)的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了掌握我區(qū)中考模擬數(shù)學(xué)試題的命題質(zhì)量與難度系數(shù),命題教師選取一個(gè)水平相當(dāng)?shù)某跞昙?jí)進(jìn)行調(diào)研,將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿分為130)分為5組:第一組5570;第二組7085;第三組85100;第四組100115;第五組115130,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問(wèn)題:

(1)本次調(diào)查共隨機(jī)抽取了__ _名學(xué)生;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)將得分轉(zhuǎn)化為等級(jí),規(guī)定:得分低于70分評(píng)為D70100分評(píng)為C,10011評(píng)為B,115130分評(píng)為A,根據(jù)目前的統(tǒng)計(jì),請(qǐng)你估計(jì)全區(qū)該年級(jí)4500名考生中,考試成績(jī)?cè)u(píng)為B級(jí)及其以上的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,過(guò)原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點(diǎn)DOB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連結(jié)DE,作DFDE,交OA于點(diǎn)F,連結(jié)EF.已知點(diǎn)EA點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

(1)如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng).

(2)如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過(guò)程中,DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出tan∠DEF的值.

(3)連結(jié)AD,當(dāng)ADDEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解居民的環(huán)保意識(shí),社區(qū)工作人員在光明小區(qū)隨機(jī)抽取了若干名居民開(kāi)展主題為打贏藍(lán)天保衛(wèi)戰(zhàn)的環(huán)保知識(shí)有獎(jiǎng)問(wèn)答活動(dòng),并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計(jì)圖(得分為整數(shù),滿分為10分,最低分為6分)

請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)本次調(diào)查一共抽取了   名居民;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)社區(qū)決定對(duì)該小區(qū)500名居民開(kāi)展這項(xiàng)有獎(jiǎng)問(wèn)答活動(dòng),得10分者設(shè)為一等獎(jiǎng),請(qǐng)你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計(jì)需準(zhǔn)備多少份一等獎(jiǎng)獎(jiǎng)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=(xm2+2xm)(m為常數(shù))

1)求證:不論m為何值,該函數(shù)的圖象與x軸總有兩個(gè)不同的公共點(diǎn);

2)當(dāng)m取什么值時(shí),該函數(shù)的圖象關(guān)于y軸對(duì)稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)概念

在兩個(gè)等腰三角形中,如果其中一個(gè)三角形的底邊長(zhǎng)和底角的度數(shù)分別等于另一個(gè)三角形的腰長(zhǎng)和頂角的度數(shù),那么稱這兩個(gè)等腰三角形互為姊妹三角形.

概念理解

1)如圖①,在ABC中,ABAC,請(qǐng)用直尺和圓規(guī)作出它的姊妹三角形(保留作圖痕跡,不寫(xiě)作法).

特例分析

2)①在ABC中,ABAC,∠A30°,,求它的姊妹三角形的頂角的度數(shù)和腰長(zhǎng);

②如圖②,在ABC中,ABACDAC上一點(diǎn),連接BD.若ABCABD互為姊妹三角形,且ABC∽△BCD,則∠A   °

深入研究

3)下列關(guān)于姊妹三角形的結(jié)論:

①每一個(gè)等腰三角形都有姊妹三角形;

②等腰三角形的姊妹三角形是銳角三角形;

③如果兩個(gè)等腰三角形互為姊妹三角形,那么這兩個(gè)三角形可能全等;

④如果一個(gè)等腰三角形存在兩個(gè)不同的姊妹三角形,那么這兩個(gè)三角形也一定互為姊妹三角形.

其中所有正確結(jié)論的序號(hào)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,MN分別在AB,CD上,且AMCN,MNAC交于點(diǎn)O,連接BO.若∠DAC26°,則∠OBC的度數(shù)為(  )

A. 54°B. 64°C. 74°D. 26°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,垂直于x軸的直線l分別于函數(shù)y=x-a+1y+x2-2ax的圖像相交于P,Q兩點(diǎn).若平移直線l,可以使P,Q都在x軸的下方,則實(shí)數(shù)a的取值范圍是_______

查看答案和解析>>

同步練習(xí)冊(cè)答案