【題目】如圖,已知拋物線與軸交于,且點,與軸交于點,其對稱軸為直線.
(1)求這條拋物線的解析式;
(2)若在軸上方的拋物線上有點,使的內(nèi)心恰好在軸上,求此時的面積;
(3)在直線上方的拋物線上有一動點,過作軸,垂足為是否存在點,使得以為頂點的三角形與相似?若存在,請求出符合條件的點的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)4;(3)存在,點為.
【解析】
(1)將點A、B的坐標(biāo)代入并結(jié)合對稱軸公式即可求出二次函數(shù)的解析式;
(2)根據(jù)三角形內(nèi)心的性質(zhì)可得x軸平分,設(shè)交軸于點,利用ASA證出△EBO≌△CBO,即可求出點E的坐標(biāo),然后根據(jù)對稱性求出點B的坐標(biāo),利用待定系數(shù)法即可求出直線BD的解析式,聯(lián)立方程即可求出點D的坐標(biāo),根據(jù)三角形中線的性質(zhì)即可求出結(jié)論;
(3)設(shè)點的橫坐標(biāo)為,則點的縱坐標(biāo)為:,然后根據(jù)點P的位置分類討論,在每種情況下根據(jù)相似三角形的對應(yīng)情況分類討論,分別畫出對應(yīng)的圖形,根據(jù)相似三角形的性質(zhì)即可求出結(jié)論.
解:(1)由題意可得
解得:
∴這條拋物線的解析式為;
(2)的內(nèi)心在軸上,
軸平分,設(shè)交軸于點,
∴∠EBO=∠CBO,
∵BO=BO,∠BOE=∠BOC=90°
∴△EBO≌△CBO
∴OE=OC=2
則,
∵,拋物線的對稱軸為直線
∴點B的坐標(biāo)為(4,0)
設(shè)直線BD的解析式為
將點B和點E的坐標(biāo)代入,得
解得:
所以直線為,
聯(lián)立
解得:或,其中(4,0)為點B的坐標(biāo)
,
∴此時為的中點,
.
(3)存在,設(shè)點的橫坐標(biāo)為,則點的縱坐標(biāo)為:
當(dāng)時,,
,
①當(dāng)時,
∴
即,
解得, (舍去),
;
②當(dāng)時,
,
即,
解得, (均不合題意,舍去),
當(dāng)0<時,
③∵∠OAC>∠OBC>∠MBO
∴不存在點P,使
④當(dāng)時,
解得:解得, (均不合題意,舍去),
綜上所述,符合條件的點為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級學(xué)生全部參加“禁毒知識競賽”,從中抽取了部分學(xué)生,將他們的競賽成績進(jìn)行統(tǒng)計后分為,,,四個等次,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)抽取了_______名學(xué)生成績;
(2)扇形統(tǒng)計圖中等級所在扇形的圓心角度數(shù)是_________;
(3)為估算全校八年級“禁毒知識競賽”平均分,現(xiàn)將、、、依次記作分、分、分、分,請估算該校八年級知識競賽平均分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“分塊計數(shù)法”:對有規(guī)律的圖形進(jìn)行計數(shù)時,有些題可以采用“分塊計數(shù)”的方法.
例如:圖1有6個點,圖2有12個點,圖3有18個點,……,按此規(guī)律,求圖10、圖n有多少個點?
我們將每個圖形分成完全相同的6塊,每塊黑點的個數(shù)相同(如圖),這樣圖1中黑點個數(shù)是6×1=6個;圖2中黑點個數(shù)是6×2=12個:圖3中黑點個數(shù)是6×3=18個;所以容易求出圖10、圖n中黑點的個數(shù)分別是 、 .
請你參考以上“分塊計數(shù)法”,先將下面的點陣進(jìn)行分塊(畫在答題卡上),再完成以下問題:
(1)第5個點陣中有 個圓圈;第n個點陣中有 個圓圈.
(2)小圓圈的個數(shù)會等于271嗎?如果會,請求出是第幾個點陣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)商存有1200千克產(chǎn)品,生產(chǎn)成本為150元/千克,售價為400元千克.因市場變化,準(zhǔn)備低價一次性處理掉部分存貨,所得貨款全部用來生產(chǎn)產(chǎn)品,產(chǎn)品售價為200元/千克.經(jīng)市場調(diào)研發(fā)現(xiàn),產(chǎn)品存貨的處理價格(元/千克)與處理數(shù)量(千克)滿足一次函數(shù)關(guān)系(),且得到表中數(shù)據(jù).
(千克) | (元/千克) |
200 | 350 |
400 | 300 |
(1)請求出處理價格(元千克)與處理數(shù)量(千克)之間的函數(shù)關(guān)系;
(2)若產(chǎn)品生產(chǎn)成本為100元千克,產(chǎn)品處理數(shù)量為多少千克時,生產(chǎn)產(chǎn)品數(shù)量最多,最多是多少?
(3)由于改進(jìn)技術(shù),產(chǎn)品的生產(chǎn)成本降低到了元/千克,設(shè)全部產(chǎn)品全部售出,所得總利潤為(元),若時,滿足隨的增大而減小,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標(biāo);
(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的布袋里裝有16個只有顏色不同的球,其中紅球有x個,白球有2x個,其他均為黃球,現(xiàn)甲從布袋中隨機(jī)摸出一個球,若是紅球則甲同學(xué)獲勝,甲同學(xué)把摸出的球放回并攪勻,由乙同學(xué)隨機(jī)摸出一個球,若為黃球,則乙同學(xué)獲勝。
(1)當(dāng)X=3時,誰獲勝的可能性大?
(2)當(dāng)x為何值時,游戲?qū)﹄p方是公平的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若O為BC邊的中點,則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點P在以DE為直徑的半圓上運(yùn)動,則PF2+PG2的最小值為( 。
A. B. C. 34 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
若該拋物線經(jīng)過點,試求的值及拋物線的頂點坐標(biāo).
求此拋物線的頂點坐標(biāo)(用含的代數(shù)式表示) ,并證明:不論為何值,該拋物線的頂點都在同一條直線上.
直線截拋物線所得的線段長是否為定值?若是,請求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,過點作直線,將繞點順時針旋轉(zhuǎn)得到(點的對應(yīng)點分別為).
(1)問題發(fā)現(xiàn)如圖1,若與重合時,則的度數(shù)為____________;
(2)類比探究:如圖2,設(shè)與BC的交點為,當(dāng)為的中點時,求線段的長;
(3)拓展延伸在旋轉(zhuǎn)過程中,當(dāng)點分別在的延長線上時,試探究四邊形的面積是否存在最小值.若存在,直接寫出四邊形的最小面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com