【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:abc0ba+c;4a+2b+c0;2c3b;a+bm am+b)(m≠1的實(shí)數(shù)).其中正確結(jié)論的有(  )

A. ①②③ B. ①③④ C. ③④⑤ D. ②③⑤

【答案】B

【解析】試題分析:①圖象開(kāi)口向下,與y軸交于正半軸,對(duì)稱軸為x=1,能得到:a<0,c>0,-=1,

∴b=-2a>0,

∴abc<0,

所以①正確;

②當(dāng)x=-1時(shí),由圖象知y<0,

把x=-1代入解析式得:a-b+c<0,

∴b>a+c,

∴②錯(cuò)誤;

③圖象開(kāi)口向下,與y軸交于正半軸,對(duì)稱軸為x=1,

能得到:a<0,c>0,-=1,

所以b=-2a,

所以4a+2b+c=4a-4a+c>0.

∴③正確;

④∵由①②知b=-2a且b>a+c,

∴2c<3b,④正確;

⑤圖象開(kāi)口向下,與y軸交于正半軸,對(duì)稱軸為x=1,能得到:a<0,c>0,-=1,

∴b=-2a,

∴a+b=a-2a=-a,m(ma+b)=m(m-2)a,

假設(shè)a+b<m(am+b),(m≠1的實(shí)數(shù))

即-a<m(m-2)a,

所以(m-1)2<0,

不滿足題意,所以假設(shè)不成立,

∴⑤不正確.

故正確結(jié)論是①、③,④.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)間同時(shí)開(kāi)始加工一批服裝.從開(kāi)始加工到加工完這批服裝甲車(chē)間工作了9小時(shí),乙車(chē)間在中途停工一段時(shí)間維修設(shè)備,然后按停工前的工作效率繼續(xù)加工,直到與甲車(chē)間同時(shí)完成這批服裝的加工任務(wù)為止.設(shè)甲、乙兩車(chē)間各自加工服裝的數(shù)量為y().甲車(chē)間加工的時(shí)間為x(時(shí)),yx之間的函數(shù)圖象如圖所示,則下列結(jié)論錯(cuò)誤的是( )

A.甲車(chē)間每小時(shí)加工服裝80

B.這批服裝的總件數(shù)為1140

C.乙車(chē)間每小時(shí)加工服裝為60

D.乙車(chē)間維修設(shè)備用了4小時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問(wèn)題:

例題:求代數(shù)式y2+4y+8的最小值.

解:y2+4y+8=y2+4y+4+4=(y+2)2+4

y+2)2≥0

y+2)2+4≥4

y2+4y+8的最小值是4.

(1)求代數(shù)式m2+m+4的最小值;

(2)求代數(shù)式4﹣x2+2x的最大值;

(3)某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)15m)的空地上建一個(gè)長(zhǎng)方形花園ABCD,花園一邊靠墻,另三邊用總長(zhǎng)為20m的柵欄圍成.如圖,設(shè)AB=x(m),請(qǐng)問(wèn):當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是二次函數(shù)yax2+bx+ca0)的圖象,對(duì)稱軸為直線x2,則下列結(jié)論正確的有(  )個(gè).

ax2+bx+c0a0)有兩個(gè)不相等的實(shí)數(shù)根

②3ac0

ab+c0

0,y1)、(4,y2)在此二次函數(shù)的圖象上,則y1y2

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】第二屆“一帶一路”國(guó)際合作高峰論壇將于20194月在北京舉行.為了讓恩施特產(chǎn)走出大山,走向世界,恩施一民營(yíng)企業(yè)計(jì)劃生產(chǎn)甲、乙兩種商品共10萬(wàn)件,銷(xiāo)住“一帶一路”沿線國(guó)家和地區(qū).已知3件甲種商品與2件乙種商品的銷(xiāo)售收入相同,1件甲種商品比2件乙種商品的銷(xiāo)售收入少600元.甲、乙兩種商品的銷(xiāo)售利潤(rùn)分別為120元和200

1)甲、乙兩種商品的銷(xiāo)售單價(jià)各多少元?

2)市場(chǎng)調(diào)研表明:所有商品能全部售出,企業(yè)要求生產(chǎn)乙種商品的數(shù)量不超過(guò)甲種商品數(shù)量的,且甲、乙兩種商品的銷(xiāo)售總收入不低于3300萬(wàn)元,請(qǐng)你為該企業(yè)設(shè)計(jì)一種生產(chǎn)方案,使銷(xiāo)售總利潤(rùn)最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:一次函數(shù) 的圖象與坐標(biāo)軸交于AB兩點(diǎn),點(diǎn)P是函數(shù)(0<x<4)圖象上任意一點(diǎn),過(guò)點(diǎn)P作PMy軸于點(diǎn)M,連接OP.

(1)當(dāng)AP為何值時(shí),OPM的面積最大?并求出最大值

(2)當(dāng)BOP為等腰三角形時(shí),試確定點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了參加學(xué)校舉行的傳統(tǒng)文化知識(shí)競(jìng)賽,某班進(jìn)行四次模擬訓(xùn)練,將成績(jī)優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩幅不完整的統(tǒng)計(jì)圖.優(yōu)秀人數(shù)條形統(tǒng)計(jì)圖

優(yōu)秀率折線統(tǒng)計(jì)圖

請(qǐng)根據(jù)以上兩幅圖,解答下列問(wèn)題:

1)該班總?cè)藬?shù)是________

2)根據(jù)計(jì)算,請(qǐng)你補(bǔ)全兩幅統(tǒng)計(jì)圖;

3)觀察補(bǔ)全后的統(tǒng)計(jì)圖,寫(xiě)出一條你發(fā)現(xiàn)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝超市購(gòu)進(jìn)單價(jià)為30元的童裝若干件,物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不低于每件30元,不高于每件60元.銷(xiāo)售一段時(shí)間后發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)為60元時(shí),平均每月銷(xiāo)售量為80件,而當(dāng)銷(xiāo)售單價(jià)每降低10元時(shí),平均每月能多售出20件.同時(shí),在銷(xiāo)售過(guò)程中,每月還要支付其他費(fèi)用450元.設(shè)銷(xiāo)售單價(jià)為x元,平均月銷(xiāo)售量為y件.

1)求出yx的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

2)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),銷(xiāo)售這種童裝每月可獲利1800元?

3)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),銷(xiāo)售這種童裝每月獲得利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在平面直角坐標(biāo)系xOy中,拋物線的解析式為,將拋物線平移后得到拋物線,若拋物線經(jīng)過(guò)點(diǎn)(02),且其頂點(diǎn)A的橫坐標(biāo)為最小正整數(shù).

1)求拋物線的解析式;

2)說(shuō)明將拋物線如何平移得到拋物線

3)若將拋物線沿其對(duì)稱軸繼續(xù)上下平移,得到拋物線,設(shè)拋物線的頂點(diǎn)為B,直線OB與拋物線的另一個(gè)交點(diǎn)為C.當(dāng)OB=OC時(shí),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案