【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若∠DBC=30°,DE=1cm,求BD的長(zhǎng).
【答案】
(1)證明:連接OA,
∵DA平分∠BDE,
∴∠BDA=∠EDA.
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠EDA,
∴OA∥CE.
∵AE⊥CE,
∴AE⊥OA.
∴AE是⊙O的切線
(2)解:∵BD是直徑,
∴∠BCD=∠BAD=90°.
∵∠DBC=30°,∠BDC=60°,
∴∠BDE=120°.
∵DA平分∠BDE,
∴∠BDA=∠EDA=60°.
∴∠ABD=∠EAD=30°.
∵在Rt△AED中,∠AED=90°,∠EAD=30°,
∴AD=2DE.
∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,
∴BD=2AD=4DE.
∵DE的長(zhǎng)是1cm,
∴BD的長(zhǎng)是4cm.
【解析】(1)連接OA,根據(jù)角之間的互余關(guān)系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切線;(2)根據(jù)圓周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長(zhǎng)AD到E,使DE=AD,連接EB,EC,DB,添加一個(gè)條件,不能使四邊形DBCE成為矩形的是( )
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣1與反比例函數(shù)y= 的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(﹣1,m).
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P(n,﹣1)是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,延長(zhǎng)EP交直線AB于點(diǎn)F,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x2+bx+c與y=x的圖像如圖所示,有以下結(jié)論:
①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0.
其中正確的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與應(yīng)用.試完成下列問題:
(1)如圖①,已知等腰Rt△ABC中,∠C=90°,點(diǎn)O為AB的中點(diǎn),作∠POQ=90°,分別交AC、BC于點(diǎn)P、Q,連結(jié)PQ、CO,求證:AP2+BQ2=PQ2;
(2)如圖②,將等腰Rt△ABC改為任意直角三角形,點(diǎn)O仍為AB的中點(diǎn),∠POQ=90°,試探索上述結(jié)論AP2+BQ2=PQ2是否仍成立;
(3)通過上述探究(可直接運(yùn)用上述結(jié)論),試解決下面的問題:如圖③,已知Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)O為AB的中點(diǎn),過C、O兩點(diǎn)的圓分別交AC、BC于P、Q,連結(jié)PQ,求△PCQ面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B,C重合),∠ADE=∠B=α,DE交AC于點(diǎn)E,且cosα= .下列結(jié)論:①△ADE∽△ACD;②當(dāng)BD=6時(shí),△ABD與△DCE全等;③△DCE為直角三角形時(shí),BD為8;④0<CE≤6.4.其中正確的結(jié)論是 . (把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景: 如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90°到△AED處,點(diǎn)B,C分別落在點(diǎn)A,E處(如圖②),易證點(diǎn)C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結(jié)論:AC+BC= CD.
簡(jiǎn)單應(yīng)用:
(1)在圖①中,若AC= ,BC=2 ,則CD= .
(2)如圖③,AB是⊙O的直徑,點(diǎn)C、D在⊙上, = ,若AB=13,BC=12,求CD的長(zhǎng). 拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(zhǎng)(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點(diǎn)P為AB的中點(diǎn),若點(diǎn)E滿足AE= AC,CE=CA,點(diǎn)Q為AE的中點(diǎn),則線段PQ與AC的數(shù)量關(guān)系是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com