【題目】如圖所示,已知△ABC,分別以AB、AC邊作圖:AE⊥AB,AF⊥AC,AE=AB,AF=AC,下列結論①△AEC≌△ABF,②EC=FB,③EC⊥FB,④MA平分∠EMF中,正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】∵AE⊥AB,AF⊥AC,
∴∠EAB=∠FAC=90°,
∴∠EAB+∠BAC=∠FAC+∠BAC,
∴∠EAC=∠BAF,
在△AEC和△ABF中
∴△AEC≌△ABF(SAS);
故①正確;
∵△AEC≌△ABF(已證)
∴EC=FB;
故②正確;
∵△AEC≌△ABF,
∴∠ACE=∠AFB,
∵∠FAC=90°,
∴∠AFB+∠AOF=90°,
∴∠ACE+∠AOF=90°,
∵∠AOF=∠COM,
∴∠ACE+∠COM=90°,
∴∠CMF=180°-90°=90°,
∴EC⊥BF;
故③正確;
作AP⊥CE于P,AQ⊥BF于Q,如圖所示:
∵△EAC≌△BAF,
∴AP=AQ(全等三角形對應邊上的高相等).
∵AP⊥CE于P,AQ⊥BF于Q,
∴AM平分∠EMF.
故④正確;
綜合上述可得:①②③④共計4個正確.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】某工人若每小時生產(chǎn)38個零件,在規(guī)定時間內還有15個不能完成,若每小時生產(chǎn)42個零件,則可以超額完成5個,問:規(guī)定時間是多少?設規(guī)定時間為x小時,則可列方程為( )
A.38x﹣15=42x+5
B.38x+15=42x﹣5
C.42x+38x=15+5
D.42x﹣38x=15﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點D,∠ABD=∠ACB.
(1)求證:AB是圓的切線;
(2)若點E是BC上一點,已知BE=4 ,tan∠AEB=,AB∶BC=2∶3,求圓的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=3x2的圖象向左平移2個單位,得到新的圖象的二次函數(shù)表達式是( )
A.y=3x2+2
B.y=(3x+2)2
C.y=3(x+2)2
D.y=3(x﹣2)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在暑假到來之前,某機構向八年級學生推薦了A,B,C三條游學線路,現(xiàn)對全級學生喜歡哪一條游學線路作調查,以決定最終的游學線路,下面的統(tǒng)計量中最值得關注的是( )
A. 方差 B. 平均數(shù) C. 中位數(shù) D. 眾數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:“半角問題”:
(1)如圖:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點.且∠EAF=60°.探究圖中線段EF,BE,FD之間的數(shù)量關系.
小明同學探究此“半角問題”的方法是:延長FD到點G.使DG=BE.連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是 ;(直接寫結論,不需證明)
探索延伸:當聰明的你遇到下面的問題該如何解決呢?
(2)若將(1)中“∠BAD=120°,∠EAF=60°”換為∠EAF=∠BAD.其它條件不變。如圖1,試問線段EF、BE、FD具有怎樣的數(shù)量關系,并證明.
(3)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是邊BC、CD上的點,且∠EAF=∠BAD,請直接寫出線段EF、BE、FD它們之間的數(shù)量關系.(不需要證明)
(4)如圖3,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長線上的點,且∠EAF=∠BAD,試問線段EF、BE、FD具有怎樣的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,E是AB邊上一點,且∠A=∠EDF=60°,有下列結論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④當AD=4時,△DEF的面積的最小值為.其中結論正確的個數(shù)是(。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com