如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,點E、F分別是AB、BC邊的中點,連接AF、CE交于點M,連接BM并延長交CD于點N,連接DE交AF于點P,則結(jié)論:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=:3;⑤S△EPM=S梯形ABCD,正確的個數(shù)有( )

A.5個
B.4個
C.3個
D.2個
【答案】分析:連接DF,AC,EF,如圖所示,由E、F分別為AB、BC的中點,且AB=BC,得到EB=FB,再由一對公共角相等,利用SAS可得出△ABF與△CBE全等,由確定三角形的對應(yīng)角相等得到一對角相等,再由AE=FC,對頂角相等,利用AAS可得出△AME與△CMF全等,由全等三角形的對應(yīng)邊相等可得出ME=MF,再由BE=BF,BM=BM,利用SSS得到△BEM與△BFM全等,根據(jù)全等三角形的對應(yīng)角相等可得出∠ABN=∠CBN,選項①正確;由AD=AE,梯形為直角梯形,得到∠EAD為直角,可得出△AED為等腰直角三角形,可得出∠AED為45°,由∠ABC為直角,且∠ABN=∠CBN,可得出∠ABN為45°,根據(jù)同位角相等可得出DE平行于BN,選項②正確;由AD=AE=AB=BC,且CF=BC,得到AD=FC,又AD與FC平行,根據(jù)一組對邊平行且相等的四邊形為平行四邊形得到ADCF為平行四邊形,可得出AF=DC,又AF=CE,等量代換可得出DC=EC,即△DCE為等腰三角形,選項③正確;由EF為△ABC的中位線,利用三角形中位線定理得到EF平行于AC,由兩直線平行得到兩對內(nèi)錯角相等,根據(jù)兩對對應(yīng)角相等的兩三角形相似可得出△EFM與△ACM相似,且相似比為1:2,可得出EM:MC=1:2,設(shè)EM=x,則有MC=2x,用EM+MC表示出EC,設(shè)EB=y,根據(jù)BC=2EB,表示出BC,在直角三角形BCE中,利用勾股定理表示出EC,兩者相等得到x與y的比值,即為EM與BE的比值,即可判斷選項④正確與否;由E為AB的中點,利用等底同高得到△AME的面積與△BME的面積相等,由△BME與△BFM全等,得到面積相等,可得出三個三角形的面積相等都為△ABF面積的,由E為AB的中點,且EP平行于BM,得到P為AM的中點,可得出△AEP的面積等于△PEM的面積,得到△PEM的面積為△ABF面積的,由ABFD為矩形得到△ABF與△ADF全等,面積相等,由△ADF與△CFD全等得到面積相等,可得出三個三角形面積相等都為梯形面積的,綜上得到△PEM的面積為梯形面積的,可得出選項⑤錯誤,綜上,得到正確的個數(shù).
解答:解:連接DF,AC,EF,如圖所示:
∵E、F分別為AB、BC的中點,且AB=BC,
∴AE=EB=BF=FC,
在△ABF和△CBE中,
,
∴△ABF≌△CBE(SAS),
∴∠BAF=∠BCE,AF=CE,
在△AME和△CMF中,

∴△AME≌△CMF(AAS),
∴EM=FM,
在△BEM和△BFM中,

∴△BEM≌△BFM(SSS),
∴∠ABN=∠CBN,選項①正確;
∵AE=AD,∠EAD=90°,
∴△AED為等腰直角三角形,
∴∠AED=45°,
∵∠ABC=90°,
∴∠ABN=∠CBN=45°,
∴∠AED=∠ABN=45°,
∴ED∥BN,選項②正確;
∵AB=BC=2AD,且BC=2FC,
∴AD=FC,又AD∥FC,
∴四邊形AFCD為平行四邊形,
∴AF=DC,又AF=CE,
∴DC=EC,
則△CED為等腰三角形,選項③正確;
∵EF為△ABC的中位線,
∴EF∥AC,且EF=AC,
∴∠MEF=∠MCA,∠EFM=∠MAC,
∴△EFM∽△CAM,
∴EM:MC=EF:AC=1:2,
設(shè)EM=x,則有MC=2x,EC=EM+MC=3x,
設(shè)EB=y,則有BC=2y,
在Rt△EBC中,根據(jù)勾股定理得:EC==y,
∴3x=y,即x:y=:3,
∴EM:BE=:3,選項④正確;
∵E為AB的中點,EP∥BM,
∴P為AM的中點,
∴S△AEP=S△EPM=S△AEM,
又S△AEM=S△BEM,且S△BEM=S△BFM,
∴S△AEM=S△BEM=S△BFM=S△ABF,
∵四邊形ABFD為矩形,
∴S△ABF=S△ADF,又S△ADF=S△DFC,
∴S△ABF=S△ADF=S△DFC=S梯形ABCD,
∴S△EPM=S梯形ABCD,選項⑤錯誤.
則正確的個數(shù)有4個.
故選B
點評:此題考查了直角梯形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,等腰直角三角形的性質(zhì),平行四邊形的判定與性質(zhì),相似三角形的判定與性質(zhì),以及三角形的中位線定理,熟練掌握性質(zhì)與定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直角梯形ABCD中,AD∥BC∥EF,∠A=90°,BC=DC=4,AC、BD交于E,且EF=ED.
(1)求證:△DBC為等邊三角形.
(2)若M為AD的中點,求過M、E、C的拋物線的解析式.
(3)判定△BCD的外心是否在該拋物線上(說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、當(dāng)我們遇到梯形問題時,我們常用分割的方法,將其轉(zhuǎn)化成我們熟悉的圖形來解決:
(1)按要求對下列梯形分割(分割線用虛線)
①分割成一個平行四邊形和一個三角形;  ②分割成一個長方形和兩個直角三角形;

(2)如圖,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=4cm,BC=8cm,∠C=45°,請你用適當(dāng)?shù)姆椒▽μ菪畏指睿梅指詈蟮膱D形求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形的一條對角線把梯形分為一個直角三角形和一個邊長為8cm的等邊三角形,則梯形的中位線長為 (  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形ABCD中,AD∥BC(AD<BC),∠B=90°,AB=AD+BC.點E是CD的中點,點F是AB上的點,∠ADF=45°,F(xiàn)E=a,梯形ABCD的面積為m.
(1)求證:BF=BC;
(2)求△DEF的面積(用含a、m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形ABCD中,AD∥BC,∠B=90°,∠C=60°,BC=12cm,DC=16cm,動點P沿A→D→C線路以2cm/秒的速度向C運動,動點Q沿B→C線路以1cm/秒的速度向C運動.P、Q兩點分別從A、B同時出發(fā),當(dāng)其中一點到達C點時,另一點也隨之停止.設(shè)運動時間為t秒,△PQB的面積為y cm2
(1)求AD的長及t的取值范圍;
(2)求y關(guān)于t的函數(shù)關(guān)系式;
(3)是否存在這樣的t,使得△PQB的面積為
9
3
2

查看答案和解析>>

同步練習(xí)冊答案