(2013•沙市區(qū)一模)拋物線y=x2-6x+5的頂點坐標和對稱軸分別為( 。
分析:先把拋物線y=x2-6x+5化為頂點式的形式,再求出其頂點坐標及對稱軸方程即可.
解答:解:∵拋物線y=x2-6x+5可化為y=(x-3)2-4的形式,
∴其頂點坐標為:(3,-4),對稱軸方程為;x=3.
故選A.
點評:本題考查的是二次函數(shù)的性質,根據(jù)題意把二次函數(shù)化為頂點式的形式是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•沙市區(qū)一模)如圖,Rt△ABC中,∠ACB=90°,AC=BC=2
2
,若把Rt△ABC繞邊AB所在直線旋轉一周,則所得幾何體的表面積為
8
2
π
8
2
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•沙市區(qū)一模)兩塊大小一樣斜邊為4且含有30°角的三角板如圖水平放置.將△CDE繞C點按逆時針方向旋轉,當E點恰好落在AB邊上的E′點時,
EE′
的長度為
π
3
π
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•沙市區(qū)一模)關于x的一元二次方程x2+2x+k+1=0的實數(shù)解是x1和x2,如果x1+x2-x1x2<-1,且k為整數(shù),則k的值為
-1或0
-1或0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•沙市區(qū)一模)如圖,已知點A的坐標為(
3
,3),AB⊥x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA,AB分別交與點C,D.若AB=3BD,則四邊形BOCD的面積為
2+
3
2
2+
3
2

查看答案和解析>>

同步練習冊答案