【題目】如圖,AB是⊙O的直徑,點C、E在⊙O上,∠B=2ACE,在BA的延長線上有一點P,使得∠P=BAC,弦CEAB于點F,連接AE

1)求證:PE是⊙O的切線;

2)若AF=2AE=EF=,求OA的長.

【答案】1)見解析;(2OA=5

【解析】

1)連接OE,根據(jù)圓周角定理得到∠AOE=B,根據(jù)圓周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到結(jié)論;

2)根據(jù)等腰三角形的性質(zhì)得到∠OAE=OEA,∠EAF=AFE,再根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

解:(1)連接OE,

∴∠AOE=2ACE,

∵∠B=2ACE,

∴∠AOE=B,

∵∠P=BAC,

∴∠ACB=OEP,

AB是⊙O的直徑,

∴∠ACB=90°,

∴∠OEP=90°

PE是⊙O的切線;

2)∵OA=OE,

∴∠OAE=OEA

AE=EF,

∴∠EAF=AFE

∴∠OAE=OEA=EAF=AFE,

∴△AEF∽△AOE,

,

AF=2,AE=EF=,

OA=5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量學(xué)校旗桿AB的高度,小明從旗桿正前方3米處的點C出發(fā),沿坡度為i=1:的斜坡CD前進(jìn)2米到達(dá)點D,在點D處放置測角儀,測得旗桿頂部A的仰角為37°,量得測角儀DE的高為1.5米.A、B、C、D、E在同一平面內(nèi),且旗桿和測角儀都與地面垂直.

(1)求點D的鉛垂高度(結(jié)果保留根號);

(2)求旗桿AB的高度(精確到0.1).

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4BC5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,點Ax軸正半軸,點Cy軸正半軸,點D是邊BC的中點,反比例函數(shù)k0,x0)的圖象經(jīng)過BD.若點C的縱坐標(biāo)為6,點D的橫坐標(biāo)為3.5,則k的值是( 。

A. 6B. 8C. 12D. 14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDO的直徑,ACO的弦,ABACADBC于點E,AE2,ED4,延長DB到點F,使得BFBO,連接FA.則下列結(jié)論中不正確的是( 。

A. ABE∽△ADBB. ABC=∠ADB

C. AB3D. 直線FAO相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們購物的支付方式更加多樣、便捷,為調(diào)查大學(xué)生購物支付方式,某大學(xué)一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為   

2)將條形統(tǒng)計圖補(bǔ)充完整;

3)若該大學(xué)有10000名學(xué)生,請你估計購物選擇用支付寶支付方式的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,點Pa,b)經(jīng)過某種變換后得到的對應(yīng)點為. 已知A,B,C是不共線的三個點,它們經(jīng)過這種變換后,得到的對應(yīng)點分別為. 若△ABC的面積為,△的面積為,則用等式表示的關(guān)系為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y軸交于點C0,-4),與x軸交于點A,B,且B點的坐標(biāo)為(20

1)求該拋物線的解析式;

2)若點PAB上的一動點,過點PPE∥AC,交BCE,連接CP,求△PCE面積的最大值;

3)若點DOA的中點,點M是線段AC上一點,且△OMD為等腰三角形,求M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是O的直徑,點B在O上,ACB=30°.

(1) 利用尺規(guī)作ABC的平分線BD,交AC于點E,交O于點D,連接CD(保留作圖痕跡,不寫作法)

(2) 在 (1) 所作的圖形中,求ABE與CDE的面積之比.

查看答案和解析>>

同步練習(xí)冊答案