【題目】如圖,在四邊形ABCD中,點(diǎn)E是線段AD上的任意一點(diǎn)(E與A,D不重合),G,F,H分別是BE,BC,CE的中點(diǎn).
(1)證明四邊形EGFH是平行四邊形;(2)若EF⊥BC,且EF=BC,證明平行四邊形EGFH是正方形
【答案】(1)平行四邊形
(2)見(jiàn)解析
【解析】
(1)通過(guò)中位線定理得出GF∥EH且GF=EH,所以四邊形EGFH是平行四邊形;
(2)當(dāng)添加了條件EF⊥BC,且EF=BC后,通過(guò)對(duì)角線相等且互相垂直平分(EF⊥GH,且EF=GH)就可證明是正方形.
證明:(1)∵G,F分別是BE,BC的中點(diǎn),
∴GF∥EC且GF=EC.
又∵H是EC的中點(diǎn),EH=EC,
∴GF∥EH且GF=EH.
∴四邊形EGFH是平行四邊形.
(2)連接GH,EF.
∵G,H分別是BE,EC的中點(diǎn),
∴GH∥BC且GH=BC.
又∵EF⊥BC且EF=BC,
又∵EF⊥BC,GH是三角形EBC的中位線,
∴GH∥BC,
∴EF⊥GH,
又∵EF=GH.
∴平行四邊形EGFH是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A=x-2y,B=-x-4y+1.
(1)求2(A+B)-(A-B);(結(jié)果用含x,y的代數(shù)式表示)
(2)當(dāng)與互為相反數(shù)時(shí),求(1)中代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上有兩點(diǎn)A、B,它們對(duì)應(yīng)的數(shù)分別為a、b,其中a=12.
(1)在點(diǎn)B的左側(cè)作線段BC=AB,在B的右側(cè)作線段BD=3AB(要求:作出圖形,不寫(xiě)作法,保留作圖痕跡);
(2)若點(diǎn)C對(duì)應(yīng)的數(shù)為c,點(diǎn)D對(duì)應(yīng)的數(shù)為的d,且AB=20,求c、d的值;
(3)在(2)的條件下,設(shè)點(diǎn)M是BD的中點(diǎn),N是數(shù)軸上一點(diǎn),且CN=2DN,請(qǐng)直接寫(xiě)出MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓的周長(zhǎng)為4個(gè)單位長(zhǎng),數(shù)軸每個(gè)數(shù)字之間的距離為1個(gè)單位,在圓的四等分點(diǎn)處分別標(biāo)上0,1,2,3,先讓圓周上表示數(shù)字0的點(diǎn)與數(shù)軸上表示-1的點(diǎn)重合.再將數(shù)軸按逆時(shí)針?lè)较颦h(huán)繞在該圓上(如圓周上表示的數(shù)字3的點(diǎn)與數(shù)軸上表示-2的點(diǎn)重合……),則該數(shù)軸上表示-2019的點(diǎn)與圓周上重合的點(diǎn)表示的數(shù)字是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是( )
A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);
(2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過(guò)程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:數(shù)學(xué)活動(dòng)課上,陳老師給出如下定義:有一組對(duì)邊相等而另一組對(duì)邊不相等的凸四邊形叫做對(duì)等四邊形.
理解:(1)如圖1,已知A、B、C在格點(diǎn)(小正方形的頂點(diǎn))上,請(qǐng)?jiān)诜礁駡D中畫(huà)出以格點(diǎn)為頂點(diǎn),AB、BC為邊的兩個(gè)對(duì)等四邊形ABCD;
應(yīng)用:(2)如圖2,在Rt△PBC中,∠PCB=90°,BC=9,點(diǎn)A在BP邊上,且AB=13.AD⊥PC,CD=12,若PC上存在符合條件的點(diǎn)M,使四邊形ABCM為對(duì)等四邊形,求出CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.
(3) 點(diǎn)A,B,C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請(qǐng)問(wèn):3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com