【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點(diǎn)F,D為AB的中點(diǎn),連接DF延長交AC于點(diǎn)E.若AB=10,BC=16,則線段EF的長為(
A.2
B.3
C.4
D.5

【答案】B
【解析】解:∵AF⊥BF, ∴∠AFB=90°,
∵AB=10,D為AB中點(diǎn),
∴DF= AB=AD=BD=5,
∴∠ABF=∠BFD,
又∵BF平分∠ABC,
∴∠ABF=∠CBF,
∴∠CBF=∠DFB,
∴DE∥BC,
∴△ADE∽△ABC,
,即 ,
解得:DE=8,
∴EF=DE﹣DF=3,
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用平行線的判定和直角三角形斜邊上的中線,掌握同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行;直角三角形斜邊上的中線等于斜邊的一半即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB切⊙O于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,劣弧 的弧長為 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC= ,則圖中陰影部分的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點(diǎn)F,點(diǎn)E為垂足,連接DF,則∠CDF為(
A.80°
B.70°
C.65°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD為平行四邊形,DFEC和BCGH為正方形.求證:AC⊥EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程 (3x﹣1)2=(x﹣1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,先把一矩形ABCD紙片上下對折,設(shè)折痕為MN;如圖②,再把點(diǎn)B 疊在折痕線MN上,得到Rt△ABE.過B點(diǎn)作PQ⊥AD,分別交BC、AD于點(diǎn)P、Q.

(1)求證:△PBE∽△QAB;
(2)在圖②中,EB是否平分∠AEC?請說明理由;
(3)在(1)(2)的條件下,若AB=4,求PE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長BD交CF于點(diǎn)H.求證:BD⊥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生家長對孩子使用手機(jī)的態(tài)度情況,隨機(jī)抽取部分學(xué)生家長進(jìn)行問卷調(diào)查,發(fā)出問卷140份,每位學(xué)生家長1份,每份問卷僅表明一種態(tài)度,將回收的問卷進(jìn)行整理(假設(shè)回收的問卷都有效),并繪制了如圖兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問題:
(1)回收的問卷數(shù)為份,“嚴(yán)加干涉”部分對應(yīng)扇形的圓心角度數(shù)為
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整
(3)若將“稍加詢問”和“從來不管”視為“管理不嚴(yán)”,已知全校共1500名學(xué)生,請估計(jì)該校對孩子使用手機(jī)“管理不嚴(yán)”的家長大約有多少人?

查看答案和解析>>

同步練習(xí)冊答案