【題目】如圖,ABCD為平行四邊形,DFEC和BCGH為正方形.求證:AC⊥EG.

【答案】證明:∵四邊形BCGH、EFDC為正方形,四邊形ABCD為平行四邊形, ∴GC∥BH,DC∥AB,∠HBC=∠ECD=90°,
∴∠HBA=∠GCD(兩邊分別平行的兩角相等或互補),
∴∠HBC+∠HBA=∠GCD+∠ECD,即90°+∠HBA=∠GCD+90°,
∴∠GCE=∠ABC,
∴AB=DC=EC,BC=CG,
在△ABC和和△ECG中,
,
∴△ABC≌△ECG(SAS),
∴∠CGE=∠ACB,
∵∠ACB+∠GCA=90°,
∴∠CGE+∠GCA=90°,
∴AC⊥EG.

【解析】本題中要證AC⊥EG也就是證∠CGE+∠GCA=90°,我們發(fā)現(xiàn)∠GBA+∠ACB=90°,因此證明∠CGE=∠ACB就是問題的關鍵,我們可通過證明三角形ABC和ECG全等來實現(xiàn).
【考點精析】本題主要考查了平行四邊形的性質和正方形的性質的相關知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點D,交AB于點H,AC的垂直平分線交BC于點E,交AC于點G,連接AD,AE,則下列結論錯誤的是(
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)△ABC不動,將△EDC繞點C旋轉到∠BCE=45°,證明:四邊形ACDM是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ADF按順時針方向旋轉一定角度后得到△ABE,若AF=4.AB=7.
(1)旋轉中心為;旋轉角度為;
(2)求DE的長度;
(3)指出BE與DF的關系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是(
A.k> 且k≠2
B.k≥ 且k≠2
C.k> 且k≠2
D.k≥ 且k≠2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點F,D為AB的中點,連接DF延長交AC于點E.若AB=10,BC=16,則線段EF的長為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若a,b為實數(shù),且b=
(1)求 的值;
(2)若 的值是關于x的一元二次方程x2﹣2x+k2+k=0的一個根;求k及另一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣ ,y2)、點C( ,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 . 其中正確的結論有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1、O2、O3 , …組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒 個單位長度,則第2017秒時,點P的坐標是( )

A.(2016,0)
B.(2017,1)
C.(2017,﹣1)
D.(2018,0)

查看答案和解析>>

同步練習冊答案