【題目】內(nèi)接于邊于點,連接.
如圖1,求證:;
如圖2,延長交于點,點在線段上,射線交邊于點,連接,若,求證:;
如圖3,在的條件下,連接,若,,求線段的長.
【答案】(1)詳見解析;(2)詳見解析;(3)
【解析】
(1) 連接,根據(jù)得到,再根據(jù)圓周角定理得到,根據(jù)圓內(nèi)等腰三角形特點與三角形內(nèi)角和得到,故,即可證明;
(2)由(1)得,得到, 根據(jù)可得,再得到,根據(jù)三角形內(nèi)角和可知即可證明;
(3)延長,交于點,過作,垂足為,連接,利用得到,故,得到,由可知,再得到,求出,設,則,證明
,可得,利用勾股定理可求,利用
,得到,求出BF,再根據(jù)得到方程求出x,得到BD,BE的長,根據(jù)垂徑定理得到BM,再求出MD,根據(jù)求出,由勾股定理求出OD的長.
連接
由(1)得
,
延長,交于點,過作,垂足為,連接,
,,
,
設,則
∵
在中,勾股定理可求
在中,由勾股定理可求.
科目:初中數(shù)學 來源: 題型:
【題目】小明發(fā)現(xiàn)相機快門打開過程中,光圈大小變化如圖1所示,于是他繪制了如圖2所示的圖形.圖2中留個形狀大小都相同的四邊形圍成一個圓的內(nèi)接六邊形和一個小正六邊形,若PQ所在的直線經(jīng)過點M,PB=5cm,小正六邊形的面積為cm2,則該圓的半徑為________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y= x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(1,0),C(0,2).
(1)求拋物線的表達式;
(2) 請你在拋物線的對稱軸上找點P,使△PCD是以CD為腰的等腰三角形,所有符合條件的點P的坐標分別為 ;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點E,連接AC、OC、BC
(1)求證:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的面積.(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明家在A處,門前有一口池塘,隔著池塘有一條公路l,AB是A到l的小路.現(xiàn)新修一條路AC到公路l.小明測量出∠ACD=31°,∠ABD=45°,BC=100m.請你幫小明計算他家到公路l的距離AD的長度?(精確到1m;參考數(shù)據(jù)tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,將線段繞點順時針旋轉90°得到線段,反比例函數(shù)的圖象經(jīng)過點.
(1)求直線和反比例函數(shù)的解析式;
(2)已知點是反比例函數(shù)圖象上的一個動點,求點到直線距離最短時的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對“隔離直線”給出如下定義:點是圖形上的任意一點,點是圖形上的任意一點,若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.
(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為 .
(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標軸平行,直角頂點的坐標是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達式:若不存在,請說明理由;
(3)正方形的一邊在軸上,其它三邊都在軸的左側,點是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個口袋,口袋中裝有兩個分別標有數(shù)字2,3的小球,口袋中裝有三個分別標有數(shù)字的小球(每個小球質量、大小、材質均相同).小明先從口袋中隨機取出一個小球,用表示所取球上的數(shù)字;再從口袋中順次取出兩個小球,用表示所取兩個小球上的數(shù)字之和.
(1)用樹狀圖法或列表法表示小明所取出的三個小球的所有可能結果;
(2)求的值是整數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com