如圖,二次函數(shù)的圖象,記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;……如此進(jìn)行下去,直至得C14. 若P(27,m)在第14段圖象C14上,則m=       
1.

試題分析:根據(jù)題意,得
C1;
C2
C3;
C4
………
C14.
對于C13有:當(dāng)x=27時,y=1,所以,m=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于的方程:①和②,其中.
(1)求證:方程①總有兩個不相等的實數(shù)根;
(2)設(shè)二次函數(shù)的圖象與軸交于、兩點(點在點的左側(cè)),將、兩點按照相同的方式平移后,點落在點處,點落在點處,若點的橫坐標(biāo)恰好是方程②的一個根,求的值;
(3)設(shè)二次函數(shù),在(2)的條件下,函數(shù),的圖象位于直線左側(cè)的部分與直線)交于兩點,當(dāng)向上平移直線時,交點位置隨之變化,若交點間的距離始終不變,則的值是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)的圖象與軸交于、兩點,與軸交于點,已知點(-1,0),點C(0,-2).
(1)求拋物線的函數(shù)解析式;
(2)試探究的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)此拋物線上是否存在點P,使得以P、A、C、B為頂點的四邊形為梯形.若存在,請寫出所有符合條件的P點坐標(biāo);若不存在,請說明理由;
(4)若點是線段下方的拋物線上的一個動點,求面積的最大值以及此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的圖象過點C(0,1),頂點為Q(2,3)點D在x軸正半軸上,且線段OD=OC
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點的移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線交坐標(biāo)軸于A、B、D三點,過點D作軸的平行線交拋物線于點C.直線l過點E(0,-),且平分梯形ABCD面積.
⑴ 直接寫出A、B、D三點的坐標(biāo);
⑵ 直接寫出直線l的解析式;
⑶ 若點P在直線l上,且在x軸上方,tan∠OPB=,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”,已知點C的坐標(biāo)為(0,-),點M是拋物線C2:y=mx2-2mx-3m(m<0)的頂點.

(1)求A、B兩點的坐標(biāo);
(2)“蛋線”在第四象限內(nèi)是否存在一點P,使得∆PBC的面積最大?若存在,求出∆PBC面積的最大值;若不存在,請說明理由;
(3)當(dāng)∆BDM為直角三角形時,請直接寫出m的值.(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M、N兩點間的距離為MN=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如果一條拋物線軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是       三角形;
(2)如圖,△OAB是拋物線的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達(dá)式;若不存在,說明理由;
(3)在(2)的條件下,若以點E為圓心,r為半徑的圓與線段AD只有一個公共點,求出r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=-x2+2x+3的頂點坐標(biāo)是(  )
A.(-1,4) B.(1,3) C.(-1,3) D.(1,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

飛機著陸后滑行的距離S(單位:m)與滑行的時間t(單位:S)的函數(shù)關(guān)系式是,則飛機著陸后滑行       米才能停下來。

查看答案和解析>>

同步練習(xí)冊答案