【題目】如圖,已知⊙的直徑,為圓周上兩點,且四邊形是平行四邊形,直線切⊙于點,分別交的延長線于點,與交于點.
(1)求證:;
(2)求的長.
【答案】(1)證明見解析;(2)AE=.
【解析】
(1)利用圓周角定理得到∠DBC=90°,再利用平行四邊形的性質(zhì)得AO∥BC,所以BD⊥OA,再根據(jù)切線的性質(zhì)得出OA⊥EF,所以OA⊥EF,于是得到EF∥BD;
(2)連接OB,如圖,利用平行四邊形的性質(zhì)得OA=BC,則OB=OC=BC,于是可判斷△OBC為等邊三角形,所以∠C=60°,易得∠AOE=∠C=60°,然后在Rt△OAE中利用正切的定義可求出AE的長.
解:(1) :∵CD為直徑,
∴∠DBC=90°,
∴BD⊥BC,
∵四邊形OABC是平行四邊形,
∴AO∥BC,
∴BD⊥OA,
∵直線EF切⊙O于點A,
∴OA⊥EF,
∴EF∥BD;
(2)連接,
∵四邊形OABC是平行四邊形,
∴OA=BC,
而OB=OC=OA,
∴OB=OC=BC,
∴△OBC為等邊三角形,
∴∠C=60°,
∴∠AOE=∠C=60°,
在Rt△OAE中,,
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:與x軸交于點B1,以OB1為邊長作等邊△A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊△A2A1B2,過點A2作A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊△A3A2B3,…,則點A2 018的橫坐標是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AC,BD為對角線,BC=3,BC邊上的高為2,則陰影部分的面積為( )
A. 3B. 4C. 6D. 12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形是正方形,且,點與重合,以為圓心,作半徑長為5的半圓,交于點,交于點,交的延長線于點.
發(fā)現(xiàn)是半圓上任意一點,連接,則的最大值為______;
思考如圖2,將半圓繞點逆時針旋轉(zhuǎn),記旋轉(zhuǎn)角為
(1)當時,求半圓落在正方形內(nèi)部的弧長;
(2)在旋轉(zhuǎn)過程中,若半圓與正方形的邊相切時,請直接寫出此時點到切點的距離.(注:,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,過點作于點,點是線段上一動點,過三點作交于點,過點作交的延長線于點,交于點.
(1)求證:四邊形為平行四邊形.
(2)當時,求的長.
(3)在點整個運動過程中,
①當中滿足某兩條線段相等,求所有滿足條件的的長.
②當點三點共線時,交于點,記的面積為,的面積為,求的值. (請直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B在反比例函數(shù)的圖象上,點C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則的值為( )
A. 3 B. 4 C. 2 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片中,,,折疊紙片使點落在邊上的處,折痕為.過點作交于,連接.
(1)求證:四邊形為菱形;
(2)當點在邊上移動時,折痕的端點,也隨之移動.
①當點與點重合時(如圖),求菱形的邊長;
②若限定,分別在邊,上移動,求出點在邊上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P在直線AB上方,且滿足S△PABS:矩形ABCD=1:3,則使△PAB為直角三角形的點P有( )個
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com