【題目】如圖,拋物線 (m>0)與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,C是拋物線上一個(gè)動(dòng)點(diǎn)(點(diǎn)C與點(diǎn)A,B不重合),D是OC的中點(diǎn),連結(jié)BD并延長(zhǎng),交AC于點(diǎn)E,則 的值是( )

A.
B.
C.
D.

【答案】D
【解析】解:過點(diǎn)O作OH∥AC交BE于點(diǎn)H,
,∴x1=﹣m,x2=2m,
∴A(﹣m,0)、B(2m,0),
∴OA=m,OB=2m,AB=3m,
∵D是OC的中點(diǎn),∴CD=OD,
∵OH∥AC,∴ ,
∴OH=CE,∴ ,
,故選D.

【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)與墻MN平行且距離為0.8米,已知小汽車車門寬AO為1.2米,當(dāng)車門打開角度∠AOB為40°時(shí),車門是否會(huì)碰到墻?請(qǐng)說明理由。(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,點(diǎn)G是BC延長(zhǎng)線上一點(diǎn),連接AG,點(diǎn)E、F分別在AG上,連接BE、DF,∠1=∠2,∠3=∠4.
(1)證明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動(dòng)點(diǎn),沿B→A→C的路徑移動(dòng),過點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在踐行“社會(huì)主義核心價(jià)值觀”演講比賽中,對(duì)名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示:

組號(hào)

分組

頻數(shù)

6≤m<7

2

7≤m<8

7

8≤m<9

a

9≤m≤10

2


(1)求a的值;
(2)若用扇形圖來描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對(duì)應(yīng)的扇形圖的圓心角大;
(3)將在第一組內(nèi)的兩名選手記為:A1、A2 , 在第四組內(nèi)的兩名選手記為:B1、B2 , 從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知矩形ABCD中,AB=60cm,BC=90cm.點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度沿AB運(yùn)動(dòng):同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以20cm/s的速度沿BC運(yùn)動(dòng).當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(s).

(1)當(dāng)t=s時(shí),△BPQ為等腰三角形;
(2)當(dāng)BD平分PQ時(shí),求t的值;
(3)如圖②,將△BPQ沿PQ折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為E,PE、QE分別與AD交于點(diǎn)F、G.探索:是否存在實(shí)數(shù)t,使得AF=EF?如果存在,求出t的值:如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E在邊AD上,以BE為折痕,將△ABE向上翻折,點(diǎn)A正好落在CD上的點(diǎn)F處.若△FDE的周長(zhǎng)為5,△FCB的周長(zhǎng)為17,則FC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋里裝有2個(gè)紅球,1個(gè)白球,1個(gè)黃球,它們除顏色外其余都相同.
(1)求從袋中摸出一個(gè)球是黃球的概率.
(2)摸出一個(gè)球,記下顏色后不放回,攪拌均勻,再摸出1個(gè)球,求兩次摸出的球恰好顏色不同的概率(要求畫樹狀圖或列表).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算: +cos60°×( 2
(2)計(jì)算: +

查看答案和解析>>

同步練習(xí)冊(cè)答案