【題目】已知等腰△ABC的頂角∠A=36°(如圖).
(1)請用尺規(guī)作圖法作底角∠ABC的平分線BD,交AC于點D(保留作圖痕跡,不要求寫作法);
(2)證明:△ABC∽△BDC.

【答案】
(1)解:如圖,線段BD為所求出;


(2)證明:∵∠A=36°,AB=AC,

∴∠ABC=∠C= (180°﹣36°)=72°.

∵BD平分∠ABC,

∴∠ABD=∠DBC=72°÷2=36°.

∵∠A=∠CBD=36°,∠C=∠C,

∴△ABD∽△BDC.


【解析】(1)利用角平分線的作法作出線段BD即可;(2)先根據(jù)等腰三角形的性質(zhì)得出∠ABC=∠C=72°,再由角平分線的性質(zhì)得出∠ABD的度數(shù),故可得出∠A=∠CBD=36°,∠C=∠C,據(jù)此可得出結(jié)論.
【考點精析】本題主要考查了等腰三角形的性質(zhì)和相似三角形的判定的相關(guān)知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DE是AC的垂直平分線,點D在BC上,△ABC的周長為20cm,△ABD的周長為12cm,則AE的長為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,且對角線AC為直徑,AD=BC,過點D作DG⊥AC,垂足為E,DG分別與AB及CB延長線交于點F、M.
(1)求證:四邊形ABCD是矩形;
(2)若點G為MF的中點,求證:BG是⊙O的切線;
(3)若AD=4,CM=9,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD,點M從點A出發(fā)以每秒1個單位長度的速度向點B運動,點N從點A出發(fā)以每秒3個單位長度的速度沿A→D→C→B的路徑向點B運動,當(dāng)一個點到達點B時,另一個點也隨之停止運動,設(shè)△AMN的面積為s,運動時間為t秒,則能大致反映s與t的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上的一點,∠EAB=∠ADB.

(1)求證:AE是⊙O的切線;
(2)已知點B是EF的中點,求證:△EAF∽△CBA.
(3)已知AF=4,CF=2,在(2)的條件下,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的切線,BC為⊙O的直徑,AC與⊙O交于點D,點E為AB的中點,PF⊥BC交BC于點G,交AC于點F
(1)求證:ED是⊙O的切線;
(2)求證:△CFP∽△CPD;
(3)如果CF=1,CP=2,sinA= ,求O到DC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE= AC,連接AE交OD于點F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為4cm,直線l與⊙O相交于A、B兩點,AB=4 cm,P為直線l上一動點,以1cm為半徑的⊙P與⊙O沒有公共點.設(shè)PO=dcm,則d的范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC,AC與BD相交于P.已知A(2,3),B(1,1),D(4,3),則點P的坐標(biāo)為().

查看答案和解析>>

同步練習(xí)冊答案