【題目】如圖,在四邊形ABCD中,E是AB的中點(diǎn),AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時(shí),求CD的長.
【答案】(1)證明見解析;(2)CD =3
【解析】分析: (1)根據(jù)二直線平行同位角相等得出∠A=∠BEC,根據(jù)中點(diǎn)的定義得出AE=BE,然后由ASA判斷出△AED≌△EBC;
(2)根據(jù)全等三角形對應(yīng)邊相等得出AD=EC,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形得出四邊形AECD是平行四邊形,根據(jù)平行四邊形的對邊相等得出答案.
詳解:
(1)證明 :∵AD∥EC
∴∠A=∠BEC
∵E是AB中點(diǎn),
∴AE=BE
∵∠AED=∠B
∴△AED≌△EBC
(2)解 :∵△AED≌△EBC
∴AD=EC
∵AD∥EC
∴四邊形AECD是平行四邊形
∴CD=AE
∵AB=6
∴CD= AB=3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級320名學(xué)生在電腦培訓(xùn)前后各參加了一次水平相同的考試,考試成績都以統(tǒng)一標(biāo)準(zhǔn)劃分成“不及格”“及格”和“優(yōu)秀”三個(gè)等級.為了解電腦培訓(xùn)的效果,用抽簽方式得到其中32名學(xué)生培訓(xùn)前后兩次成績的等級,并繪制成如圖所示的統(tǒng)計(jì)圖,請結(jié)合圖中信息估計(jì)該校整個(gè)八年級學(xué)生中,培訓(xùn)后考試成績的等級為“及格”和“優(yōu)秀”的學(xué)生共有______名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】榮慶公司計(jì)劃從商店購買同一品牌的臺燈和手電筒,已知購買一個(gè)臺燈比購買一個(gè)手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個(gè)數(shù)是購買手電筒個(gè)數(shù)的一半.
(1)求購買該品牌一個(gè)臺燈、一個(gè)手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購買一個(gè)該品牌臺燈贈送一個(gè)該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個(gè)數(shù)是臺燈個(gè)數(shù)的2倍還多8個(gè),且該公司購買臺燈和手電筒的總費(fèi)用不超過670元,那么榮慶公司最多可購買多少個(gè)該品牌臺燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是長方體的平面展開圖.
(1)將平面展開圖折疊成一個(gè)長方體,與字母N重合的點(diǎn)有哪幾個(gè)?
(2)若AG=CK=14 cm,F(xiàn)G=2 cm,LK=5 cm,則該長方體的表面積和體積分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,在中,已知,,與的平分線交于點(diǎn),求證:是等腰三角形.
(2).閱讀下列文字:我們知道,對于一個(gè)圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式.例如由圖1可以得到 .請解答下列問題:
①.寫出圖2中所表示的數(shù)學(xué)等式;
②.利用(1)中所得到的結(jié)論,解決下面的問題:已知,,求的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙、丙等多家食品公司在某市開設(shè)蛋糕店,該市蛋糕店數(shù)量的扇形統(tǒng)計(jì)圖如圖所示,其中統(tǒng)計(jì)圖中沒有標(biāo)注相應(yīng)公司數(shù)量的百分比.已知乙公司經(jīng)營150家蛋糕店,請根據(jù)該統(tǒng)計(jì)圖回答下列問題:
(1)求甲公司經(jīng)營的蛋糕店數(shù)量和該市蛋糕店的總數(shù);
(2)甲公司為了擴(kuò)大市場占有率,決定在該市增設(shè)蛋糕店數(shù)量達(dá)到全市的20%,求甲公司需要增設(shè)的蛋糕店數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是ABC的高,AE是△ABC的角平分線,且∠BAC=90°,∠C=2∠B.
求:(1)∠B的度數(shù); (2) ∠DAE的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,點(diǎn)D是邊CB上任意一點(diǎn),△ADE是等邊三角形,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.探究線段BE與DE之間的數(shù)量關(guān)系.請你完成下列探究過程:先將圖形特殊化,得出猜想,再對一般情況進(jìn)行分析并加以證明.
(1)當(dāng)點(diǎn)D與點(diǎn)C重合時(shí)(如圖2),請你補(bǔ)全圖形.由∠BAC的度數(shù)為 ,點(diǎn)E落在 ______ ,容易得出BE與DE之間的數(shù)量關(guān)為 ;
(2)當(dāng)點(diǎn)D是BC上任意一點(diǎn)(不與點(diǎn)B、C重合)時(shí),結(jié)合圖1,探究(1)中線段BE與DE之間的數(shù)量關(guān)系是否還成立?并證明你的結(jié)論.
(3)如圖3,若點(diǎn)P為直線BC上一點(diǎn),若△PAB為等腰三角形,請你求出∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某種材料溫度y(℃)隨時(shí)間x(min)變化的函數(shù)圖象.已知該材料初始溫度為15℃,溫度上升階段y與時(shí)間x成一次函數(shù)關(guān)系,且在第5分鐘溫度達(dá)到最大值60℃后開始下降;溫度下降階段,溫度y與時(shí)間x成反比例關(guān)系.
(1)分別求該材料溫度上升和下降階段,y與x間的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度高于30℃時(shí),可以進(jìn)行產(chǎn)品加工,問可加工多長時(shí)間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com