【題目】如圖①、②、③、④四個(gè)圖形都是平面圖形,觀(guān)察圖②和表中對(duì)應(yīng)數(shù)值,探究計(jì)數(shù)的方法并解答下面的問(wèn)題.
(1)數(shù)一數(shù)每個(gè)圖各有多少頂點(diǎn)、多少條邊、這些邊圍成多少區(qū)域,將結(jié)果填入下表:
圖形 | ① | ② | ③ | ④ |
頂點(diǎn)數(shù)(V) | ||||
邊數(shù)(E) | ||||
區(qū)域數(shù)(F) |
(2)根據(jù)表中的數(shù)值,寫(xiě)出平面圖的頂點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)之間的關(guān)系;
(3)如果一個(gè)平面圖形有20個(gè)頂點(diǎn)和11個(gè)區(qū)域,求這個(gè)平面圖形的邊數(shù).
【答案】(1)見(jiàn)表格解析;(2)V+F=E+1;(3)30.
【解析】
(1)根據(jù)圖中的四個(gè)平面圖形數(shù)出其頂點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)得出結(jié)果;
(2)根據(jù)表(1)數(shù)據(jù)總結(jié)出歸律;
(3)根據(jù)題(2)的公式把20個(gè)頂點(diǎn)和11個(gè)區(qū)域代入即可得平面圖形的邊數(shù).
(1)結(jié)和圖形我們可以得出:
圖①有4個(gè)頂點(diǎn)、6條邊、這些邊圍成3個(gè)區(qū)域;
圖②有7個(gè)頂點(diǎn)、9條邊、這些邊圍成3個(gè)區(qū)域;
圖③有8個(gè)頂點(diǎn)、12條邊、這些邊圍成5個(gè)區(qū)域;
圖④有10個(gè)頂點(diǎn)、15條邊、這些邊圍成6區(qū)域.
(2)根據(jù)以上數(shù)據(jù),頂點(diǎn)用V表示,邊數(shù)用E表示,區(qū)域用F表示,他們的關(guān)系可表示為:V+F=E+1;
(3)把V=20,F=11代入上式得:E=V+F﹣1=20+11﹣1=30.故如果平面圖形有20個(gè)頂點(diǎn)和11個(gè)區(qū)域,那么這個(gè)平面圖形的邊數(shù)為30.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)A被分成三個(gè)面積相等的扇形,轉(zhuǎn)盤(pán)B被分成兩個(gè)面積相等的扇形.
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)A一次,所得到的數(shù)字是負(fù)數(shù)的概率為
(2)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)各一次,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法求所得到的數(shù)字均是負(fù)數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知二次函數(shù)y=﹣x2+2x+3的圖象與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.
(1)求△ABC的面積.
(2)點(diǎn)M在OB邊上以每秒1個(gè)單位的速度從點(diǎn)O向點(diǎn)B運(yùn)動(dòng),點(diǎn)N在BC邊上以每秒 個(gè)單位得速度從點(diǎn)B向點(diǎn)C運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)開(kāi)始運(yùn)動(dòng),同時(shí)停止.設(shè)運(yùn)動(dòng)的時(shí)間為t秒,試求當(dāng)t為何值時(shí),以B,M,N為頂點(diǎn)的三角形與△BOC相似?
(3)如圖②,點(diǎn)P為拋物線(xiàn)上的動(dòng)點(diǎn),點(diǎn)Q為對(duì)稱(chēng)軸上的動(dòng)點(diǎn),是否存在點(diǎn)P,Q,使得以P,Q,C,B為頂點(diǎn)的四邊形是平行四變形?若存在,直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線(xiàn)交于點(diǎn)E,∠ADC=70°.
(1)求∠EDC的度數(shù);
(2)若∠ABC=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線(xiàn)段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫(huà)出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在邊BC上,以AD為邊作正方形ADEF,連結(jié)CF,CE.
(1)求證:△ABD≌△ACF;
(2)如果BD=AC,求證:CD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了應(yīng)對(duì)金融危機(jī),節(jié)儉開(kāi)支,我區(qū)某康莊工程指揮部,要對(duì)某路段建設(shè)工程進(jìn)行招標(biāo),從甲、乙兩個(gè)工程隊(duì)的投標(biāo)書(shū)中得知:每天需支付甲隊(duì)的工程款1.5萬(wàn)元,乙隊(duì)的工程款1.1萬(wàn)元.甲、乙兩個(gè)工程隊(duì)實(shí)際施工方案如下:
(1)甲隊(duì)單獨(dú)完成這項(xiàng)工程剛好能夠如期完成;
(2)乙隊(duì)單獨(dú)完成這項(xiàng)工程要比規(guī)定的時(shí)間多用10天;
(3)若甲、乙兩隊(duì)合作8天,余下的由乙隊(duì)單獨(dú)做也正好如期完成.
試問(wèn):在不耽誤工期的前提下,你覺(jué)得哪一種施工方案最節(jié)省工程款?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,過(guò)點(diǎn)A作AE∥BD,過(guò)點(diǎn)D作ED∥AC,兩線(xiàn)相交于點(diǎn)E.
(1)求證:四邊形AODE是菱形;
(2)連接BE,交AC于點(diǎn)F.若BE⊥ED于點(diǎn)E,求∠AOD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com