【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面。

現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?

【答案】1)裁剪出的側(cè)面?zhèn)數(shù)為6x+4(19-x)=(2x+76)

裁剪出的底面?zhèn)數(shù)為5(19-x)=(-5x+95)

2)最多可以做的盒子個數(shù)為30

【解析】

試題(1)因為x張用A方法,則有(38-x)張用B方法,就可以根據(jù)題意分別表示出側(cè)面和底面的個數(shù).(2)由題意可得,側(cè)面?zhèn)數(shù)和底面?zhèn)數(shù)之比為3:2,可以列出一元一次方程,求出x的值,從而可得側(cè)面的總數(shù),即可求得.

試題解析:(1)根據(jù)題意可得,側(cè)面:(個),底面:(個).

2)根據(jù)題意可得,,解得x=7,所以盒子=(個).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從表可知,
①拋物線與x軸的交點為;
②拋物線的對稱軸是;
③函數(shù)y=ax2+bx+c的最大值為;
④x , y隨x增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DE⊥DF,交AB于點E,連結(jié)EG、EF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的不等式組 的解集為x>1,且關(guān)于x的分式方程 + =3有非負(fù)整數(shù)解,則符合條件的m的所有值的和是(
A.﹣2
B.﹣4
C.﹣7
D.﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】萬州某運輸公司的一艘輪船在長江上航行,往返于萬州、朝天門兩地。假設(shè)輪船在靜水中的速度不變,長江的水流速度不變,該輪船從萬州出發(fā),逆水航行到朝天門,停留一段時間(卸貨、裝貨、加燃料等,又順?biāo)叫蟹祷厝f州,若該輪船從萬州出發(fā)后所用時間為x(小時),輪船距萬州的距離為y(千米),則下列各圖中,能反映y與x之間函數(shù)關(guān)系的圖象大致是【 】

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,以AB為斜邊,作直角△ABD,使點D落在△ABC內(nèi),∠ADB=90°.

(1)如圖1,若AB=AC,∠DBA=60°,AD=7 ,點P、M分別為BC、AB邊的中點,連接PM,求線段PM的長;
(2)如圖2,若AB=AC,把△ABD繞點A逆時針旋轉(zhuǎn)一定角度,得到△ACE,連接ED并延長交BC于點P,求證:BP=CP;
(3)如圖3,若AD=BD,過點D的直線交AC于點E,交BC于點F,EF⊥AC,且AE=EC,請直接寫出線段BF、FC、AD之間的關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,Rt△ABC中,∠C=90°,AC=3,BC=4.DAB邊上任意一點,則CD的最小值為 。

(2)如圖②,在矩形ABCD中,AB=3,BC=4.M、N分別在BD、BC上。求CM+MN的最小值

(3)如圖③,在矩形ABCD中,AB=3,BC=4.EAB邊上的一點,且AE=2,點FBC邊上的任意一點。把△BEF沿EF翻折,點B對應(yīng)點G,連接AG、CG.四邊形AGCD的面積的最小值是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知、在數(shù)軸上的位置如圖所示,所對應(yīng)的點分別為、,

在數(shù)軸上表示的點與表示的點之間的距離為________;

在數(shù)軸上表示的點與表示的點之間的距離為________;

在數(shù)軸上表示的點與表示的點之間的距離為________;

由此可得點、之間的距離為________,點之間的距離為________,點之間的距離為________

化簡:;

的倒數(shù)是它本身,的絕對值的相反數(shù)是,

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1經(jīng)過過點P(2,2),分別交x軸、y軸于點A(4,0),B。

(1)求直線l1的解析式;

(2)點Cx軸負(fù)半軸上一點,過點C的直線l2交線段AB于點D。

如圖1,當(dāng)點D恰與點P重合時,點Qt,0)為x軸上一動點,過點QQMx軸,分別交直線l1、l2于點M、N。若,MN=2MQ,求t的值;

如圖2,若BC=CD,試判斷m,n之間的數(shù)量關(guān)系并說明理由。

查看答案和解析>>

同步練習(xí)冊答案