【題目】將長為、寬為的長方形白紙,按如圖所示的方法黏合起來,黏合部分寬為.

1)根據(jù)上圖,將表格補充完整:

白紙張數(shù)

1

2

3

4

10

紙條長度

40

75

110

2)設(shè)張白紙黏合后的總長度為,則之間的關(guān)系式是 ;

3)你認為白紙黏合起來總長度可能為嗎?為什么?

【答案】1)根據(jù)上圖,將表格補充完整:

白紙張數(shù)

1

2

3

4

10

紙條長度

40

75

110

145

355

2)y=35x+5

3)不存在

【解析】

第一問,實際是找規(guī)律,把第一張白紙看成40cm,每增加一張白紙,就增長35cm

這樣就好做了

第二問,設(shè)一次函數(shù)表達式,將第一問中的任意兩個點代入表達式,求出參數(shù),即可給出結(jié)果,

第三問主要利用第二問的表示,當y=2018時,x是否存在對應(yīng)的整數(shù),

1)根據(jù)上圖,將表格補充完整:

白紙張數(shù)

1

2

3

4

10

紙條長度

40

75

110

145

355

2)設(shè)y與x的表達式為y=kx+b,將(1,40),(2,75)代入得 ,解得

K=35,b=5,,∴表達式為y=35x+5

(3)當y=2018時,2018=35x+5,解得x=57.5,不滿足要求,∴不存在

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系內(nèi),二次函數(shù)y=ax2+bx+c(a0)的圖象的頂點D在第四象限內(nèi),且該圖象與x軸的兩個交點的橫坐標分別為1和3.若反比例函數(shù)y=(k0,x>0)的圖象經(jīng)過點D.則下列說法不正確的是(

A.b=2a B.a(chǎn)+b+c<0 C.c=a+k D.a(chǎn)+2b+4c<8k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內(nèi)一點,且OA=OB=OD.求證:

(1)∠BOD=∠C;

(2)四邊形OBCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是△ABC外接圓上的動點,且B,D位于AC的兩側(cè),DEAB,垂足為E,DE的延長線交此圓于點F.BGAD,垂足為G,BGDE于點H,DC,F(xiàn)B的延長線交于點P,且PC=PB.

(1)求證:BGCD;

(2)設(shè)△ABC外接圓的圓心為O,若AB=DH,OHD=80°,求∠BDE的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點,分別根據(jù)下列條件求出點P的坐標.

1)點Px軸上;

2)點Py軸上;

3)點Px軸、y軸的距離相等;

4)點Q的坐標為,直線軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.

(1)求此拋物線的解析式;

(2)求C、D兩點坐標及BCD的面積;

(3)若點P在x軸上方的拋物線上,滿足SPCD=SBCD,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點DBC的中點,點EF分別是線段AD及其延長線上,且DE=DF,給出下列條件:①BEEC;②BFEC;③AB=AC,從中選擇一個條件使四邊形BECF是菱形,并給出證明,你選擇的條件是___(只填寫序號).

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線與x軸相交于點A(﹣2,0)、B(4,0),與y軸交于點C(0,﹣4),BC與拋物線的對稱軸相交于點D.

(1)求該拋物線的表達式,并直接寫出點D的坐標;

(2)過點AAEAC交拋物線于點E,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船正自西向東航行追趕魚群,在A處望見島C在船的北偏東60°方向,前進20海里到達B處,此時望見島C在船的北偏東30°方向,以島C為中心的12海里內(nèi)為軍事演習(xí)的危險區(qū).請通過計算說明:如果這艘漁船繼續(xù)向東追趕魚群是否有進入危險區(qū)的可能.(參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

同步練習(xí)冊答案