【題目】如圖,P是正方形ABCD對角線BD上的一動點不與B、D重合,,,垂足分別為EF

求證:四邊形AFPE為矩形;

求證:

當(dāng)EF取最小值時,判斷四邊形APEF是怎樣的四邊形?證明你的結(jié)論.

【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析.

【解析】

(1)由三個角是直角的四邊形是矩形可判斷四邊形AFPE為矩形;

(2)由矩形的性質(zhì)和正方形的性質(zhì)可得AP=CP=EF;

(3)當(dāng)APBD時,EF取最小值,由正方形的性質(zhì)可得AB=AD,∠BAD=90°,由等腰三角形的性質(zhì)和角平分線的性質(zhì)可得PE=PF,可得四邊形AFPE是正方形.

四邊形ABCD是正方形,

,且,

四邊形AFPE為矩形;

如圖,連接AC,AP,

四邊形ABCD是正方形,

垂直平分AC,

四邊形AFPE為矩形,

,

四邊形AFPE是正方形,理由如下:

如圖,當(dāng)時,EF取最小值,

四邊形ABCD是正方形,

,

,

,且,,

,且四邊形AFPE是矩形,

四邊形AFPE是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】只給定三角形的兩個元素,畫出的三角形的形狀和大小是不確定的,在下列給定的兩個條件上增加一個“AB=5cm”的條件后,所畫出的三角形的形狀和大小仍不能完全確定的是( 。

A. , B.

C. , D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點C⊙O上一點,∠BAC的平分線AD⊙O于點D,過點D垂直于AC的直線交AC的延長線于點E

1)求證:DE⊙O的切線;

2)如圖AD=5,AE=4,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,RtABC的三個頂點A(-2,2),B(0,5),C(0,2).

(1)ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到A1B1C,請畫出A1B1C的圖形.

(2)平移ABC,使點A的對應(yīng)點A2坐標(biāo)為(-2,-6),請畫出平移后對應(yīng)的A2B2C2的圖形.

(3)若將A1B1C繞某一點旋轉(zhuǎn)可得到A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.

(1)求新傳送帶AC的長度;

(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物是否需要挪走,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩塊全等的含30°角的直角三角板按圖1的方式放置,已知∠BAC=B1A1C=30°,AB=2BC.

(1)固定三角板A1B1C,然后將三角板ABC繞點C順時針方向旋轉(zhuǎn)至圖2的位置,ABA1C、A1B1分別交于點D、E,ACA1B1交于點F.

①填空:當(dāng)旋轉(zhuǎn)角等于20°時,∠BCB1=   度;

②當(dāng)旋轉(zhuǎn)角等于多少度時,ABA1B1垂直?請說明理由.

(2)將圖2中的三角板ABC繞點C順時針方向旋轉(zhuǎn)至圖3的位置,使ABCB1,ABA1C交于點D,試說明A1D=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線C1y=的頂點為M,與y軸相交于點N,先將拋物線C1沿x軸翻折,再向右平移p個單位長度后得到拋物線C2:直線ly=kx+b經(jīng)過M,N兩點.

(1)結(jié)合圖象,直接寫出不等式x2+6x+2<kx+b的解集;

(2)若拋物線C2的頂點與點M關(guān)于原點對稱,求p的值及拋物線C2的解析式;

(3)若直線l沿y軸向下平移q個單位長度后,與(2)中的拋物線C2存在公共點,

求3﹣4q的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次課外實踐活動中,同學(xué)們要測量某公園人工湖兩側(cè)A,B兩個涼亭之間的距離.現(xiàn)測得AC=50m,BC=100m,∠CAB=120°,請計算A,B兩個涼亭之間的距離.

查看答案和解析>>

同步練習(xí)冊答案