【題目】已知拋物線y=14x2+1(如圖所示).
(1)填空:拋物線的頂點坐標是(___,___),對稱軸是___;
(2)已知y軸上一點A(0,2),點P在拋物線上,過點P作PB⊥x軸,垂足為B. 若△PAB是等邊三角形,求點P的坐標;
(3)在(2)的條件下,點M在直線AP上。在平面內(nèi)是否存在點N,使四邊形OAMN為菱形?若存在,直接寫出所有滿足條件的點N的坐標;若不存在,請說明理由。
【答案】(1)(1)頂點坐標是(0,1),對稱軸是y軸(或x=0);(2)P1(2,4),P2(﹣2,4);(3)存在N1(,1),N2(﹣,﹣1)N3(﹣,1),N4(,﹣1)使得四邊形OAMN是菱形.
【解析】
(1)根據(jù)函數(shù)的解析式直接寫出其頂點坐標和對稱軸即可;
(2)根據(jù)等邊三角形的性質(zhì)求得PB=4,將PB=4代入函數(shù)的解析式后求得x的值即可作為P點的橫坐標,代入解析式即可求得P點的縱坐標;
(3)首先求得直線AP的解析式,然后設出點M的坐標,利用勾股定理表示出有關(guān)AP的長即可得到有關(guān)M點的橫坐標的方程,求得M的橫坐標后即可求得其縱坐標,
解:(1)頂點坐標是(0,1),對稱軸是y軸(或x=0).
(2)∵△PAB是等邊三角形,
∴∠ABO=90°﹣60°=30°.
∴AB=20A=4.
∴PB=4.
解法一:把y=4代入y=x2+1,
得 x=±2.
∴P1(2,4),P2(﹣2,4).
解法二:∴OB==2
∴P1(2,4).
根據(jù)拋物線的對稱性,得P2(﹣2,4).
(3)∵點A的坐標為(0,2),點P的坐標為(2,4)
∴設線段AP所在直線的解析式為y=kx+b
∴
解得:
y=x+2
設存在點N使得OAMN是菱形,
∵點M在直線AP上,
∴設點M的坐標為:(m,m+2)
如圖,作MQ⊥y軸于點Q,則MQ=m,AQ=OQ﹣OA=m+2﹣2=m
∵四邊形OAMN為菱形,
∴AM=AO=2,
∴在直角三角形AMQ中,AQ2+MQ2=AM2,
即:m2+(m)2=22
解得:m=±
代入直線AP的解析式求得y=3或1,
當P點在拋物線的右支上時,分為兩種情況:
當N在右圖1位置時,
∵OA=MN,
∴MN=2,
又∵M點坐標為(,3),
∴N點坐標為(,1),即N1坐標為(,1).
當N在右圖2位置時,
∵MN=OA=2,M點坐標為(﹣,1),
∴N點坐標為(﹣,﹣1),即N2坐標為(﹣,﹣1).
當P點在拋物線的左支上時,分為兩種情況:
第一種是當點M在線段PA上時(PA內(nèi)部)我們求出N點坐標為(﹣,1);
第二種是當M點在PA的延長線上時(在第一象限)我們求出N點坐標為(,﹣1)
∴存在N1(,1),N2(﹣,﹣1)N3(﹣,1),N4(,﹣1)使得四邊形OAMN是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,AB=AC=3,在△ABC內(nèi)作第一個內(nèi)接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內(nèi)作第二個內(nèi)接正方形HIKJ;再取線段KJ的中點Q,在△QHI內(nèi)作第三個內(nèi)接正方形…依次進行下去,則第2014個內(nèi)接正方形的邊長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次海上救援中,兩艘專業(yè)救助船同時收到某事故漁船的求救訊息,已知此時救助船在的正北方向,事故漁船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故漁船與救助船相距120海里.
(1)求收到求救訊息時事故漁船與救助船之間的距離;
(2)若救助船A,分別以40海里/小時、30海里/小時的速度同時出發(fā),勻速直線前往事故漁船處搜救,試通過計算判斷哪艘船先到達.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=(x﹣3)2+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(1,0)及點B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)拋物線上是否存在一點P,使S△ABP=S△ABC?若存在,請求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為九年級數(shù)學競賽獲獎選手購買以下三種獎品,其中小筆記本每本5元,大筆記本每本7元,鋼筆每支10元,購買的大筆記本的數(shù)量是鋼筆數(shù)量的2倍,共花費346元,若使購買的獎品總數(shù)最多,則這三種獎品的購買數(shù)量各為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學中,把長與寬之比為(或?qū)捙c長之比為)的矩形稱為黃金矩形.
思考解決下列問題:
(1)已知圖1中黃金矩形的長,求的長;
(2)黃金矩形有個奇妙的特性:把圖1中的黃金矩形,以為邊向矩形內(nèi)作正方形,則矩形是否為黃金矩形,是,請予以證明;不是,請說明理由;
(3)黃金矩形使名畫《蒙娜麗莎》顯得特別和諧,專家分析畫中布局如圖2,其中最外面的矩形是黃金矩形,以黃金矩形的寬為邊向矩形內(nèi)部作正方形,由上小題知產(chǎn)生的小矩形為更小的黃金矩形,按此規(guī)律依次生成各黃金矩形,若圖3中最大黃金矩形的長為,則最小黃金矩形的長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動點P、Q分別以3cm/s、2cm/s的速度從點A、C同時出發(fā),點Q從點C向點D移動.
(1)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P、Q分別從點A、C同時出發(fā),問經(jīng)過多長時間P、Q兩點之間的距離是10cm?
(2)若點P沿著AB→BC→CD移動,點P、Q分別從點A、C同時出發(fā),點Q從點C移動到點D停止時,點P隨點Q的停止而停止移動,試探求經(jīng)過多長時間△PBQ的面積為12cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,經(jīng)過原點的拋物線解析式可以是。
(1)對于這樣的拋物線:
當頂點坐標為(1,1)時,a= ;
當頂點坐標為(m,m),m≠0時,a 與m之間的關(guān)系式是 ;
(2)繼續(xù)探究,如果b≠0,且過原點的拋物線頂點在直線上,請用含k的代數(shù)式表示b;
(3)現(xiàn)有一組過原點的拋物線,頂點A1,A2,…,An在直線上,橫坐標依次為1,2,…,n(n為正整數(shù),且n≤12),分別過每個頂點作x軸的垂線,垂足記為B1,B2,B3,…,Bn,以線段AnBn為邊向右作正方形AnBnCnDn,若這組拋物線中有一條經(jīng)過點Dn,求所有滿足條件的正方形邊長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(0,2),B(p,q)在直線上,拋物線m經(jīng)過點B、C(p+4,q),且它的頂點N在直線l上.
(1)若B(-2,1),
①請在平面直角坐標系中畫出直線l與拋物線m的示意圖;
②設拋物線m上的點Q的模坐標為e(-2≤e≤0)過點Q作x軸的垂線,與直線l交于點H.若QH=d,當d隨e的增大面增大時,求e的取值范圍;
(2)拋物線m與y軸交于點F,當拋物線m與x軸有唯一交點時,判斷△NOF的形狀并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com