【題目】如圖,二次函數(shù)y=(x﹣3)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn),已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上的點(diǎn)A(1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)拋物線上是否存在一點(diǎn)P,使S△ABP=S△ABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=(x﹣3)2﹣4;y=x﹣1;(2)存在,P點(diǎn)坐標(biāo)為(3,﹣4)或(4,﹣3)或(7,12).
【解析】
(1)先將點(diǎn)A(1,0)代入y=(x﹣3)2+m求出m的值,根據(jù)點(diǎn)的對(duì)稱性確定B點(diǎn)坐標(biāo),然后根據(jù)待定系數(shù)法求出一次函數(shù)解析式;
(2)假設(shè)存在點(diǎn)P,設(shè)點(diǎn)P(a,a2﹣6a+5),根據(jù)三角形ABP面積為三角形ABC面積,由兩三角形都以AB為底邊,得到C到直線AB的距離為P到直線AB距離相等,利用點(diǎn)到直線的距離公式列出關(guān)于a的方程,求出方程的解得到a的值,即可確定出滿足題意P的坐標(biāo).
(1)將點(diǎn)A(1,0)代入y=(x﹣3)2+m得(1﹣3)2+m=0,解得:m=﹣4.
所以二次函數(shù)解析式為y=(x﹣3)2﹣4,即y=x2﹣6x+5;
當(dāng)x=0時(shí),y=9﹣4=5,所以C點(diǎn)坐標(biāo)為(0,5),由于C和B關(guān)于對(duì)稱軸對(duì)稱,而拋物線的對(duì)稱軸為直線x=3,所以B點(diǎn)坐標(biāo)為(6,5),將A(1,0)、B(6,5)代入y=kx+b得:,解得:.
所以一次函數(shù)解析式為y=x﹣1;
(2)假設(shè)存在點(diǎn)P,設(shè)點(diǎn)P(a,a2﹣6a+5).
∵S△ABP=S△ABC,∴C到直線AB的距離為P到直線AB距離相等,∴,即﹣a2+7a﹣6=6或﹣a2+7a﹣6=﹣6,解得:a=3,a=4或a=0(舍去),a=7,則a2﹣6a+5=﹣4或﹣3或12,∴P點(diǎn)坐標(biāo)為(3,﹣4)或(4,﹣3)或(7,12).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c的對(duì)稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:
①4ac<b2;
②a>b>c;
③一次函數(shù)y=ax+c的圖象不經(jīng)第四象限;
④m(am+b)+b<a(m是任意實(shí)數(shù));
⑤3b+2c>0.
其中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2﹣2(k﹣1)x+2.
(1)當(dāng)k=3時(shí),求函數(shù)圖象與x軸的交點(diǎn)坐標(biāo);
(2)函數(shù)圖象的對(duì)稱軸與原點(diǎn)的距離為2,當(dāng)﹣1≤x≤5時(shí),求此時(shí)函數(shù)的最小值;
(3)函數(shù)圖象交y軸于點(diǎn)B,交直線x=4于點(diǎn)C,設(shè)二次函數(shù)圖象上的一點(diǎn)P(x,y)滿足0≤x≤4時(shí),y≤2,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E、F分別在AB、AD上,若CE=3,且∠ECF=45°,則AF的長(zhǎng)為( 。
A.4B.3C.2.5D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=與x軸分別交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè),)與y軸交于點(diǎn)C,作直線AC.
(1)點(diǎn)B的坐標(biāo)為 ,直線AC的關(guān)系式為 .
(2)設(shè)在直線AC下方的拋物線上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P作PD⊥x軸于D,交直線AC于點(diǎn)E,當(dāng)CE平分∠OEP時(shí)求點(diǎn)P的坐標(biāo).
(3)點(diǎn)M在x軸上,點(diǎn)N在拋物線上,試問(wèn)以點(diǎn)A、C、M、N為頂點(diǎn)的四邊形能否成為平行四邊形?若存在,直接寫(xiě)出所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)簡(jiǎn)述你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,點(diǎn)E在BC上,AE=AD,DF⊥AE,垂足為F.
(1)求證:DF=AB;
(2)若∠FDC=30°,且AB=4,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=14x2+1(如圖所示).
(1)填空:拋物線的頂點(diǎn)坐標(biāo)是(___,___),對(duì)稱軸是___;
(2)已知y軸上一點(diǎn)A(0,2),點(diǎn)P在拋物線上,過(guò)點(diǎn)P作PB⊥x軸,垂足為B. 若△PAB是等邊三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,點(diǎn)M在直線AP上。在平面內(nèi)是否存在點(diǎn)N,使四邊形OAMN為菱形?若存在,直接寫(xiě)出所有滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象開(kāi)口向上,圖象經(jīng)過(guò)點(diǎn)(-1,2)和(1,0),且與y
軸相交于負(fù)半軸。給出四個(gè)結(jié)論:①;②;③;④ ,其中正確結(jié)論的序
號(hào)是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)有一塊長(zhǎng)為30m,寬為24m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com