【題目】某校舉行漢字聽寫大賽,學習對參賽者獲獎情況進行統(tǒng)計,根據(jù)比賽成績列出統(tǒng)計表,并繪制了扇形統(tǒng)計圖

1)參加此次比賽的學生共______________人.

2

3)若從一等獎中隨機抽取兩名學生,參加市級漢字聽寫大賽,請用樹狀圖或列表的方法,求出所選的兩名學生正好為一男一女的概率.

等次

男生

女生

一等獎

3

m

二等獎

6

12

三等獎

8

9

鼓勵獎

6

n

【答案】150;(224,34;(3

【解析】

1)用獲得二等獎的人數(shù)除以二等獎所占百分比即得答案;

2)用總人數(shù)×10%減去獲得一等獎的男生人數(shù)即為m的值,獲得三等獎的百分比=8+9)÷總人數(shù),進而可得t的值,用總人數(shù)×鼓勵獎所占百分比-獲得鼓勵獎的男生人數(shù)即為n的值;

3)先列出表格求出所有可能的結果數(shù),再找出所選的兩名學生正好為一男一女的結果數(shù),然后根據(jù)概率公式計算即可.

解:(1)(6+12)÷36%=50;

故答案為:50;

2m=50×10%3=2

t%=8+9)÷50=34%,∴t=34

n=50×136%34%10%)-6=4,

故答案為:2,4,34

3)一等獎共有5人,三男二女,分別設三男為A,BC;兩女為M,N,列表如下:

由表可知,共有20種等可能的結果,其中一男一女的結果有12種,

所以所選的兩名學生正好為一男一女的概率為=

答:所選的兩名學生正好為一男一女的概率是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2bx4的圖象與x軸交于點B(20)、點C(8,0)兩點,與y軸交于點A

(1)求二次函數(shù)的表達式;

(2)連接ACAB,若點N在線段BC上運動(不與點B、C重合),過點NNMAC,交AB于點M,當△AMN面積最大時,求N點的坐標;

(3)連接OM,在(2)的結論下,線段AC上有一動點P,連接PM,求PMPC的值最小時,點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)(問題發(fā)現(xiàn))如圖1,△ABC和△ADE均為等邊三角形,點BD,E在同一條直線上.填空:①線段BD,CE之間的數(shù)量關系為 ;②∠BEC = °

        

2)(類比探究)如圖2,△ABC和△ADE均為等腰直角三角形,∠ACB=AED=90°,AC=BC,AE=DE,點B,D,E在同一條直線上,請判斷線段BD,CE之間的數(shù)量關系及∠BEC的度數(shù),并給出證明.

3)如圖3,在△ABC中,∠ACB=90°,∠A=30°,AB = 5,點DAB 邊上,DEAC于點E,AE = 3,將△ADE繞點A旋轉,當DE所在直線經過點B時,CE的長是多少?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠BAC30°,點O是邊AC的中點.

1)在圖1中,將△ABC繞點O逆時針旋轉n°得到△A1B1C1,使邊A1B1經過點C.求n的值.

2)將圖1向右平移到圖2位置,在圖2中,連結AA1、AC1、CC1.求證:四邊形AA1CC1是矩形;

3)在圖3中,將△ABC繞點O順時針旋轉m°得到△A2B2C2,使邊A2B2經過點A,連結AC2、A2C、CC2

請你直接寫出m的值和四邊形AA2CC2的形狀;

AB,請直接寫出AA2的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+2bx+12b(b為常數(shù))

1)若點(25)在該拋物線上,求b的值;

2)若該拋物線的頂點坐標是(mn),求n關于m的函數(shù)解析式;

3)若拋物線與x軸交點之間的距離大于4,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于點,與軸交于點,直線經過點

1)求的值;

2)若點是直線上方拋物線的一部分上的動點,過點P軸于點F,交直線AB于點D,求線段的最大值

3)在(2)的條件下,連接,點是拋物線對稱軸上的一動點,在拋物線上是否存在點,使得以為頂點的四邊形是平行四邊形,若存在,請直接寫出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ACBC,∠ACBα,點D為直線BC上一動點,過點DDFAC交直線AB于點F,將AD繞點D順時針旋轉α得到ED,ED交直線AB于點O,連接BE

1)問題發(fā)現(xiàn):

如圖1,α90°,點D在邊BC上,猜想:

AFBE的數(shù)量關系是   

②∠ABE  度.

2)拓展探究:

如圖2,α90°,點D在邊BC上,請判斷AFBE的數(shù)量關系及∠ABE的度數(shù),并給予證明.

3)解決問題

如圖3,90°α180°,點D在射線BC上,且BD3CD,若AB8,請直接寫出BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線yax2+4x+c經過原點O0,0)和點A 33),P為拋物線上的一個動點,過點Px軸的垂線,垂足為Bm,0),并與直線OA交于點C

1)求拋物線的解析式;

2)當點P在直線OA上方時,求線段PC的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DBCB的延長線于G

1)求證:△ADE≌△CBF;

2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論.

查看答案和解析>>

同步練習冊答案