【題目】如圖甲,點(diǎn)E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P,Q同時(shí)從B點(diǎn)出發(fā),點(diǎn)P沿BE→ED→DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們的運(yùn)動(dòng)速度都是1cm/s,設(shè)P、Q出發(fā)t秒時(shí),△BPQ的面積為y(),已知y與t的函數(shù)關(guān)系的圖象如圖乙(曲線OM為拋物線的一部分),則下列結(jié)論:
①當(dāng)0<t≤5時(shí),y=;②tan∠ABE=;③點(diǎn)H的坐標(biāo)為(11,0);④△ABE與△QBP不可能相似.
其中正確的是 (把你認(rèn)為正確結(jié)論的序號(hào)都填上).
【答案】①②③.
【解析】
試題分析:根據(jù)圖乙可以判斷三角形的面積變化分為三段,可以判斷出當(dāng)點(diǎn)P到達(dá)點(diǎn)E時(shí)點(diǎn)Q到達(dá)點(diǎn)C,從而得到BC、BE的長度,再根據(jù)M、N是從5秒到7秒,可得ED的長度,然后表示出AE的長度,根據(jù)勾股定理求出AB的長度,然后針對各小題分析解答即可.①如圖1,過點(diǎn)P作PF⊥BC于點(diǎn)F,根據(jù)面積不變時(shí)△BPQ的面積為10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=,∴PF=PBsin∠PBF=,∴當(dāng)0<t≤5時(shí),y=BQPF==(故②正確);②又∵從M到N的變化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,∴tan∠ABE=,故②正確;③由圖象知,在D點(diǎn)時(shí),出發(fā)時(shí)間為7s,因?yàn)镃D=4,所以H(11,0),故③正確;④當(dāng)△ABE與△QBP相似時(shí),點(diǎn)P在DC上,如圖2所示:∵tan∠PBQ=tan∠ABE=,∴,即,解得:t=.故④錯(cuò)誤.
故答案為:①②③.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=3x+3與x軸交于點(diǎn)A,與x軸交于點(diǎn)B,過A,B兩點(diǎn)的拋物線交x軸于另一點(diǎn)C(3,0).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△ABP是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的中垂線MN交AC于點(diǎn)D,交AB于點(diǎn)M,
求證:(1)BD平分∠ABC;
(2)△BCD為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師為了幫助班級里家庭困難的x個(gè)孩子(x<10),購買了一批課外書,如果給每個(gè)家庭困難的孩子發(fā)5本,那么剩下4本;如果給每個(gè)家庭困難的孩子發(fā)6本,那么最后一個(gè)孩子只能得到本.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算(3a2-2a+1)-(2a2+3a-5)的結(jié)果是( )
A. a2-5a+6 B. 7a2-5a-4 C. a2+a-4 D. a2+a+6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=+bx+6(a≠0)相交于A(,)和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長有最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由;
(3)求△PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個(gè)旅游團(tuán)共80人,甲團(tuán)比乙團(tuán)人數(shù)的2倍多5人,甲乙兩團(tuán)各有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com