【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個(gè)單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2;并寫出點(diǎn)A2、B2、C2坐標(biāo);
(3)請畫出△ABC繞O逆時(shí)針旋轉(zhuǎn)90°后的△A3B3C3;并寫出點(diǎn)A3、B3、C3坐標(biāo).
【答案】(1)見解析;(2)見解析,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);(3)見解析,A3(﹣1,1)、B3(﹣2,4)、C3(﹣4,3).
【解析】
(1)利用平移的性質(zhì)得出對應(yīng)點(diǎn)的位置進(jìn)而得出答案
(2)利用關(guān)于原點(diǎn)對稱點(diǎn)的性質(zhì)得出對應(yīng)點(diǎn)的位置進(jìn)而得出答案
(3)利用旋轉(zhuǎn)的性質(zhì)得出旋轉(zhuǎn)后的點(diǎn)的坐標(biāo)進(jìn)而得出答案
解:(1)如圖,△A1B1C1即為所求;
(2)如圖,△A2B2C2即為所求,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);
(3)如圖,△A3B3C3即為所求,A3(﹣1,1)、B3(﹣2,4)、C3(﹣4,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次函數(shù)y=kx-6中,已知y隨x的增大而減小.下列關(guān)于反比例函數(shù)y=
的描述,其中正確的是( )
A. 當(dāng)x>0時(shí),y>0 B. y隨x的增大而增大
C. y隨x的增大而減小 D. 圖像在第二、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=3,P在BA邊上從B向A運(yùn)動(dòng),過作PE⊥PC,交AD于點(diǎn)E.
(1)如圖1,當(dāng)EP=PC時(shí),求線段AE的長度;
(2)如圖2,當(dāng)P為AB中點(diǎn)時(shí),求證:CP平分∠ECB;
(3)若⊙O直徑為CE,則在點(diǎn)P的運(yùn)動(dòng)過程中,是否存在⊙O與AB相切,若存在,求出⊙O的半徑:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,D為弧AC的中點(diǎn),DG⊥AB于G,交AC于E,AC、BD相交于F.
(1)求證:AE=DE;
(2)若AG=2,DG=4,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為1的⊙P的圓心在(﹣4,0)處.若⊙P以每秒1個(gè)單位長度,沿x軸向右勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)⊙P上有且只有2個(gè)點(diǎn)到y軸的距離為2,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn).已知反比例函數(shù)的圖象經(jīng)A(﹣2,m),過點(diǎn)作AB⊥x軸.垂足為點(diǎn)B,且△OAB的面積為1.
(1)求k和m的值;
(2)點(diǎn)C(x,y)在反比例的圖象上,當(dāng)1≤x≤3時(shí),求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)P是邊長為2的正方形ABCD的對角線BD上的動(dòng)點(diǎn),過點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF⊥DC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EF交AH于點(diǎn)G,當(dāng)點(diǎn)P在BD上運(yùn)動(dòng)時(shí)(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;②AP=EF;③AH⊥EF;④AP2=PMPH;⑤EF的最小值是.其中正確結(jié)論有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y=的圖象的一個(gè)交點(diǎn)為A(﹣1,n)
(1)求反比例函數(shù)y=的表達(dá)式.
(2)若兩函數(shù)圖象的另一交點(diǎn)為B,直接寫出B的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com